The Visual Computer

, Volume 28, Issue 3, pp 265–278 | Cite as

Uncertainty visualization using HDR volume rendering

  • Vijeth Dinesha
  • Neeharika Adabala
  • Vijay Natarajan
Original Article

Abstract

In this paper, we explore a novel idea of using high dynamic range (HDR) technology for uncertainty visualization. We focus on scalar volumetric data sets where every data point is associated with scalar uncertainty. We design a transfer function that maps each data point to a color in HDR space. The luminance component of the color is exploited to capture uncertainty. We modify existing tone mapping techniques and suitably integrate them with volume ray casting to obtain a low dynamic range (LDR) image. The resulting image is displayed on a conventional 8-bits-per-channel display device. The usage of HDR mapping reveals fine details in uncertainty distribution and enables the users to interactively study the data in the context of corresponding uncertainty information. We demonstrate the utility of our method and evaluate the results using data sets from ocean modeling.

Keywords

Uncertainty visualization Transfer function design Ray casting Volume rendering High dynamic range imaging Tone mapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

(AVI 36.5MB)

References

  1. 1.
    Taylor, B.N., Kuyatt, C.E.: Guidelines for evaluating and expressing the uncertainty of n.i.s.t. measurement results. Technical Note 1297, National Institute of Standards and Technology, Gaithersburg, MD, January (1993) Google Scholar
  2. 2.
    Cedilnik, A., Rheingans, P.: Procedural annotation of uncertain information. In: VIS ’00: Proceedings of the IEEE Conference on Visualization ’00, Los Alamitos, CA, USA, pp. 77–83. IEEE Computer Society Press, Los Alamitos (2000) Google Scholar
  3. 3.
    Grigoryan, G., Rheingans, P.: Point-based probabilistic surfaces to show surface uncertainty. IEEE Trans. Vis. Comput. Graph. 10(5), 564–573 (2004) CrossRefGoogle Scholar
  4. 4.
    Lee, C.H., Varshney, A.: Representing thermal vibrations and uncertainty in molecular surfaces. In: In SPIE Conference on Visualization and Data Analysis, pp. 80–90 (2002) Google Scholar
  5. 5.
    Hengl, T.: Visualisation of uncertainty using the hsi colour model: computations with colours. In: Proceedings of the 7th International Conference on GeoComputation, CD–Rom, pp. 8–17 (2003) Google Scholar
  6. 6.
    Djurcilov, S., Kim, K., Lermusiaux, P., Pang, A.: Visualizing scalar volumetric data with uncertainty. Comput. Graph. 26(2), 239–248 (2002) CrossRefGoogle Scholar
  7. 7.
    Sabella, P.: A rendering algorithm for visualizing 3d scalar fields. In: SIGGRAPH ’88: Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA, pp. 51–58. ACM Press, New York (1988) CrossRefGoogle Scholar
  8. 8.
    Yuan, X., Nguyen, M.X., Chen, B., Porter, D.H.: High dynamic range volume visualization. In: Proceedings of the IEEE Conference on Visualization 2005, pp. 327–334. IEEE Computer Society, Los Alamitos (2005) CrossRefGoogle Scholar
  9. 9.
    Yuan, X., Nguyen, M.X., Chen, B., Porter, D.H.: Hdr volvis: high dynamic range volume visualization. IEEE Trans. Vis. Comput. Graph. 12, 433–445 (2006) CrossRefGoogle Scholar
  10. 10.
    Johnson, C.R., Sanderson, A.R.: A next step: visualizing errors and uncertainty. IEEE Comput. Graph. Appl. 23(5), 6–10 (2003) CrossRefGoogle Scholar
  11. 11.
    Pang, A., Wittenbrink, C., Lodha, S.: Approaches to uncertainty visualization. Vis. Comput. 13(8), 370–90 (1997) CrossRefGoogle Scholar
  12. 12.
    Lodha, S.K., Sheehan, B., Pang, A.T., Wittenbrink, C.M.: Visualizing geometric uncertainty of surface interpolants. In: GI ’96: Proceedings of the Conference on Graphics interface ’96, Toronto, Ont., Canada, pp. 238–245. Canadian Information Processing Society, Toronto (1996) Google Scholar
  13. 13.
    Wittenbrink, C.M., Pang, A.T., Lodha, S.K.: Glyphs for visualizing uncertainty in vector fields. IEEE Trans. Vis. Comput. Graph. 2(3), 266–279 (1996) CrossRefGoogle Scholar
  14. 14.
    Haroz, S., Ma, K.-L., Heitmann, K.: Multiple uncertainties in time-variant cosmological particle data. In: Proceedings of IEEE Pacific Visualization Symposium, pp. 207–214 (2008) CrossRefGoogle Scholar
  15. 15.
    Lundström, C., Ljung, P., Persson, A., Ynnerman, A.: Uncertainty visualization in medical volume rendering using probabilistic animation. IEEE Trans. Vis. Comput. Graph. 13(6), 1648–1655 (2007) CrossRefGoogle Scholar
  16. 16.
    Dinesha, V., Adabala, N., Natarajan, V.: Uncertainty visualization using hdr image maps. In: Poster Abstracts at Eurographcs/IEEE-VGTC Symposium on Visualization 2010, Eurographics, June (2010) Google Scholar
  17. 17.
    Sanyal, J., Zhang, S., Bhattacharya, G., Amburn, P., Moorhead, R.: A user study to compare four uncertainty visualization methods for 1d and 2d datasets. IEEE Trans. Vis. Comput. Graph. 15, 1209–1218 (2009) CrossRefGoogle Scholar
  18. 18.
    Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: SIGGRAPH ’97: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA, pp. 369–378. ACM Press/Addison-Wesley, New York (1997) CrossRefGoogle Scholar
  19. 19.
    Durand, F., Dorsey, J.: Interactive tone mapping. In: Proceedings of the Eurographics Workshop on Rendering Techniques 2000, London, UK, pp. 219–230. Springer, Berlin (2000) Google Scholar
  20. 20.
    Drago, F., Myszkowski, K., Annen, T., Chiba, N.: Adaptive logarithmic mapping for displaying high contrast scenes. Comput. Graph. Forum 22, 419–426 (2003) CrossRefGoogle Scholar
  21. 21.
    Devlin, K.: Dynamic range reduction inspired by photoreceptor physiology. IEEE Trans. Vis. Comput. Graph. 11(1), 13–24 (2005) CrossRefGoogle Scholar
  22. 22.
    Pizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Geselowitz, A., Greer, T., Romeny, B.T.H., Zimmerman, J.B.: Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 39, 355–368 (1987) CrossRefGoogle Scholar
  23. 23.
    Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction for digital images. ACM Trans. Graph. 21(3), 267–276 (2002) CrossRefGoogle Scholar
  24. 24.
    Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-range images. In: SIGGRAPH ’02: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA, pp. 257–266. ACM Press, New York (2002) CrossRefGoogle Scholar
  25. 25.
    Choudhury, P., Tumblin, J.: The trilateral filter for high contrast images and meshes. In: SIGGRAPH ’05: ACM SIGGRAPH 2005 Courses, New York, NY, USA, p. 5. ACM Press, New York (2005) CrossRefGoogle Scholar
  26. 26.
    Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. In: SIGGRAPH ’02: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA, pp. 249–256. ACM Press, New York (2002) CrossRefGoogle Scholar
  27. 27.
    Ghosh, A., Trentacoste, M., Heidrich, W.: Volume rendering for high dynamic range displays. In: Volume Graphics, pp. 91–98 (2005) Google Scholar
  28. 28.
    Fairchild, M.D.: Color Appearance Models, Wiley-IS&T Series in Imaging Science and Technology, 2nd edn. Wiley, Chichester (2005) Google Scholar
  29. 29.
    Wang, L., Mueller, K.: Harmonic colormaps for volume visualization. In: IEEE/EG Symposium on Volume Graphics, pp. 33–40 (2008) Google Scholar
  30. 30.
    Kniss, J., Kindlmann, G., Hansen, C.: Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets. In: VIS ’01: Proceedings of the IEEE Conference on Visualization ’01, Washington, DC, USA, pp. 255–262. IEEE Computer Society, Los Alamitos (2001) Google Scholar
  31. 31.
    Lermusiaux, P.F.J., Haley, P.J. Jr., Leslie, W.G., Logutov, O.G.: Mseas re-analyses for the awacs-sw06 exercise in the middle atlantic bight region, 2008. http://mseas.mit.edu/Research/AWACS/Model_Output/

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Vijeth Dinesha
    • 1
  • Neeharika Adabala
    • 2
  • Vijay Natarajan
    • 3
  1. 1.Department of Computer Science and AutomationIndian Institute of ScienceBangaloreIndia
  2. 2.CybULabBangaloreIndia
  3. 3.Department of Computer Science and Automation, Supercomputer Education and Research CentreIndian Institute of ScienceBangaloreIndia

Personalised recommendations