The Visual Computer

, Volume 28, Issue 1, pp 75–86 | Cite as

3D model retrieval based on color + geometry signatures

  • Yong-Jin Liu
  • Yi-Fu Zheng
  • Lu Lv
  • Yu-Ming Xuan
  • Xiao-Lan Fu
Original Article

Abstract

Color plays a significant role in the recognition of 3D objects and scenes from the perspective of cognitive psychology. In this paper, we propose a new 3D model retrieval method, focusing on not only the geometric features but also the color features of 3D mesh models. Firstly, we propose a new sampling method that samples the models in the regions of either geometry-high-variation or color-high-variation. After collecting geometry + color sensitive sampling points, we cluster them into several classes by using a modified ISODATA algorithm. Then we calculate the feature histogram of each model in the database using these clustered sampling points. For model retrieval, we compare the histogram of an input model to the stored histograms in the database to find out the most similar models. To evaluate the retrieval method based on the new color + geometry signatures, we use the precision/recall performance metric to compare our method with several classical methods. Experiment results show that color information does help improve the accuracy of 3D model retrieval, which is consistent with the postulate in psychophysics that color should strongly influence the recognition of objects.

Keywords

3D model retrieval Color features Shape signature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Livingstone, M.D., Hubel, D.H.: Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J. Neurosci. 7, 3416–3468 (1987) Google Scholar
  2. 2.
    Gevers, T., Smeulders, A.: PicToSeek: combining color and shape invariant features for image retrieval. IEEE Trans. Image Process. 9(1), 102–119 (2000) CrossRefGoogle Scholar
  3. 3.
    Mel, B.W.: SEEMORE: combining color, shape, and texture histogramming in a neurally inspired approach to visual object recognition. Neural Comput. 9, 777–804 (1997) CrossRefGoogle Scholar
  4. 4.
    Slater, D., Healey, G.: Combining color and geometric information for the illumination invariant recognition of 3D objects. In: Proc. Fifth International Conference on Computer Vision (ICCV’95), pp. 563–568 (1995) CrossRefGoogle Scholar
  5. 5.
    Ankerst, M., Kastenmulle, G., Kriegel, H., Seidl, T.: 3D shape histograms for similarity search and classification in spatial databases. In: Proceedings of the 6th International Symposium on Advances in Spatial Databases, pp. 207–228 (1999) Google Scholar
  6. 6.
    Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., Jacobs, D.: A search engine for 3D models. ACM Trans. Graph. 22(1), 83–105 (2003) CrossRefGoogle Scholar
  7. 7.
    Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Matching 3D models with shape distributions. In: Shape Modeling International, pp. 154–166 (2001) Google Scholar
  8. 8.
    Vranic, D., Saupe, D.: 3D shape descriptor based on 3D Fourier transform. In: Proc. ECMCS 2001, pp. 271–274 (2001) Google Scholar
  9. 9.
    Horn, B.K.P.: Extended Gaussian images. In: Proceedings of the IEEE, pp. 1671–1686 (1984) Google Scholar
  10. 10.
    Vranic, D.: An improvement of rotation invariant 3D shape descriptor based on functions on concentric spheres. In: IEEE International Conference on Image Processing (ICIP 2003), vol. 3, pp. 757–760 (2003) Google Scholar
  11. 11.
    Johnson, A.E., Hebert, M.: Surface matching for object recognition in complex 3-D scenes. Image Vis. Comput. 16, 635–651 (1998) CrossRefGoogle Scholar
  12. 12.
    Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21, 433–449 (1999) CrossRefGoogle Scholar
  13. 13.
    Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3D shapes. In: ACM SIGGRAPH’01, pp. 203–212 (2001) Google Scholar
  14. 14.
    Chen, D., Tian, X., Shen, Y., Ouhyoung, M.: On visual similarity based 3d model retrieval. Comput. Graph. Forum (Eurographic’03) 22(3), 223–232 (2003) CrossRefGoogle Scholar
  15. 15.
    Tanaka, J., Weiskopf, D., Williams, P.: The role of color in high-level vision. Trends Cogn. Sci. 5(5), 211–215 (2001) CrossRefGoogle Scholar
  16. 16.
    Marr, D.: Vision: A Computational Investigation into the Human Representation and Process of Visual Information. Freeman, San Francisco (1982) Google Scholar
  17. 17.
    Ullman, S.: High-level Vision: Object Recognition and Visual Cognition. MIT Press, Cambridge (1996) MATHGoogle Scholar
  18. 18.
    Cavanagh, P.: Reconstructing the third dimension: interactions between color, texture, motion, binocular disparity, and shape. Comput. Vis. Graph. Image Process. 37, 171–195 (1987) CrossRefGoogle Scholar
  19. 19.
    International Commission on Illumination: Recommendations on uniform color space, color-difference equations, psychometric color terms, Supplement No. 2 to CIE Publication No. 15 (E-1.3.1/(TC-1.3)) (1978) Google Scholar
  20. 20.
    Taubin, G.: Estimating the tensor of curvature of a surface from a polyhedral approximation. In: Proc. Fifth International Conference on Computer Vision (ICCV’95), pp. 902–907 (1995) CrossRefGoogle Scholar
  21. 21.
    do Carmo, M.: Differential Geometry of Curves and Surfaces. Prentice-Hall, New York (1976) MATHGoogle Scholar
  22. 22.
    Olshausen, B.A., Anderson, C., van Essen, D.: A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J. Neurosci. 13(11), 4700–4719 (1993) Google Scholar
  23. 23.
    Hoffman, D., Singh, M.: Salience of visual parts. Cognition 63, 29–78 (1997) CrossRefGoogle Scholar
  24. 24.
    Lindeberg, T.: Scale-space theory: a basic tool for analysing structures at different scales. J. Appl. Stat. 21(2), 224–270 (1994) Google Scholar
  25. 25.
    Desbrun, M., Meyer, M., Schroder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: ACM SIGGRAPH’99, pp. 317–324 (1999) Google Scholar
  26. 26.
    Lee, C.H., Varshney, A., Jacobs, D.: Mesh saliency. In: ACM SIGGRAPH’05, pp. 659–666 (2005) Google Scholar
  27. 27.
    Optical Society of America: Uniformly Spaced Color Samples. Washington, DC (1977) Google Scholar
  28. 28.
    Billmeyer, F.W., Saltzman, M. Jr.: Principles of Color Technology, 2nd edn. Wiley, New York (1981) Google Scholar
  29. 29.
    Conway, B.R.: Neural Mechanisms of Color Vision: Double-Opponent Cells in the Visual Cortex. Springer, Berlin (2002) Google Scholar
  30. 30.
    Bian, Z.Q., Zhang, W.G.: Pattern Recognition. Tsinghua University Press, Beijing (1999) Google Scholar
  31. 31.
    Lv, L.: 3D model retrieval based on invariants of hierarchical geometry transformations. Master Thesis, Department of Computer Science, Tsinghua University (2010) Google Scholar
  32. 32.
    Elbaz, A.E., Kimmel, R.: On bending invariant signatures for surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1285–1295 (2003) CrossRefGoogle Scholar
  33. 33.
    Xu, D., Li, H.: Geometric moment invariants. Pattern Recognit. 41(1), 240–249 (2008) CrossRefMATHGoogle Scholar
  34. 34.
    Liu, Y.J., Chen, Z.Q., Tang, K.: Construction of iso-contours, bisectors and Voronoi diagrams on triangulated surfaces. IEEE Trans. Pattern Anal. Mach. Intell. (2011). doi:10.1109/TPAMI.2010.221 Google Scholar
  35. 35.
    McGill: 3D Shape Benchmark. http://www.cim.mcgill.ca/~shape/benchMark/ (2011)
  36. 36.
    Mou, W., Xiao, C., McNamara, T.P.: Reference directions and reference objects in spatial memory of a briefly viewed layout. Cognition 108, 136–154 (2008) CrossRefGoogle Scholar
  37. 37.
    van Rijsbergen, C.: Information Retrieval, 2nd edn. Dept. of Computer Science, Univ. of Glasgow, Glasgow (1979) Google Scholar
  38. 38.
    Silverman, B.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London (1986) MATHGoogle Scholar
  39. 39.
    Turlach, B.A.: Bandwidth selection in kernel density estimation: a review. Discussion Paper 9317, Institut de Statistique, UCL, Louvain La Neuve, 1993 Google Scholar
  40. 40.
    Jayanti, S., Iyer, N., Kalyanaraman, Y., Ramani, K.: Developing an engineering shape benchmark for cad models. Comput. Aided Des. 38(9), 939–53 (2006) CrossRefGoogle Scholar
  41. 41.
    Wang, J., He, Y., Tian, H., Cai, H.: Retrieving 3d cad model by free-hand sketches for design reuse. Adv. Eng. Inform., 22(3), 385–392 (2008) CrossRefGoogle Scholar
  42. 42.
    Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000) CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Yong-Jin Liu
    • 1
  • Yi-Fu Zheng
    • 1
  • Lu Lv
    • 1
  • Yu-Ming Xuan
    • 2
  • Xiao-Lan Fu
    • 2
  1. 1.Tsinghua National Lab for Information Science & Technology, Department of Computer Science and TechnologyTsinghua UniversityBeijingP.R. China
  2. 2.State Key Lab of Brain and Cognitive Science, Institute of PsychologyChinese Academy of SciencesBeijingP.R. China

Personalised recommendations