Advertisement

The Visual Computer

, Volume 27, Issue 6–8, pp 655–664 | Cite as

Adaptive records for volume irradiance caching

  • Mickaël Ribardière
  • Samuel Carré
  • Kadi Bouatouch
Original Article

Abstract

In this paper, we present a new irradiance caching scheme using Monte Carlo ray tracing for efficiently rendering participating media. The irradiance cache algorithm is extended to participating media. Our method allows to adjust the density of cached records depending on illumination changes. Direct and indirect contributions can be stored in the records but also multiple scattering. An adaptive shape of the influence zone of records, depending on geometrical features and irradiance variations, is introduced. To avoid a high density of cached records in low interest areas, a new method controls the density of the cache when adding new records. This record density control depends on the interpolation quality and on the photometric characteristics of the medium. Reducing the number of records accelerates both the computation pass and the rendering pass by decreasing the number of queries to the cache data structure (Kd-tree). Finally, instead of using an expensive ray marching to find records that cover the ray, we gather all the contributive records along the ray. With our method, pre-computing and rendering passes are significantly speeded-up.

Keywords

Rendering Participating media Global illumination Irradiance cache 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cerezo, E., Perez-Cazorla, F., Pueyo, X., Seron, F., Sillion, F.: A survey on participating media rendering techniques. Vis. Comput. 21, 303–328 (2005) CrossRefGoogle Scholar
  2. 2.
    Chandrasekhar, S.: Radiative Transfer. Dover, New York (1960) Google Scholar
  3. 3.
    CIE: Spatial distribution of daylight—CIE standard overcast sky and clear sky. In: CIE S 003/E-1996 (1996) Google Scholar
  4. 4.
    IESNA: Iesna standard file format for the electronic transfer of photometric data and related information. In: LM-63-02 (2002) Google Scholar
  5. 5.
    Jarosz, W., Donner, C., Zwicker, M., Jensen, H.W.: Radiance caching for participating media. ACM Trans. Graph. 27(1), 1–11 (2008) CrossRefGoogle Scholar
  6. 6.
    Jarosz, W., Zwicker, M., Jensen, H.W.: The beam radiance estimate for volumetric photon mapping. Comput. Graph. Forum (Proc. Eurographics EG’08) 27(2), 557–566 (2008) CrossRefGoogle Scholar
  7. 7.
    Jarosz, W., Zwicker, M., Jensen, H.W.: Irradiance gradients in the presence of participating media and occlusions. Comput. Graph. Forum (Proc. EGSR 2008) 27(4), 1087–1096 (2008) CrossRefGoogle Scholar
  8. 8.
    Jensen, H.W., Christensen, P.H.: Efficient simulation of light transport in scenes with participating media using photon maps. In: SIGGRAPH ’98: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 311–320. ACM, New York (1998) CrossRefGoogle Scholar
  9. 9.
    Kajiya, J.T.: The rendering equation. SIGGRAPH Comput. Graph. 20(4), 143–150 (1986) CrossRefGoogle Scholar
  10. 10.
    Křivánek, J., Bouatouch, K., Pattanaik, S.N., Žára, J.: Making radiance and irradiance caching practical: adaptive caching and neighbor clamping. In: Akenine-Möller, T., Heidrich, W. (eds.) Rendering Techniques 2006, Eurographics Symposium on Rendering. Eurographics Association, Nicosia (2006) Google Scholar
  11. 11.
    Křivánek, J., Gautron, P.: Practical Global Illumination with Irradiance Caching. Morgan & Claypool, San Rafael (2009) Google Scholar
  12. 12.
    Křivánek, J., Gautron, P., Ward, G., Jensen, H.W., Tabellion, E., Christensen, P.H.: Practical global illumination with irradiance caching. ACM SIGGRAPH ’08 Class (2008). URL http://www.graphics.cornell.edu/jaroslav/papers/2008-irradiance_caching_class/index.htm
  13. 13.
    Lafortune, E.P., Willems, Y.D.: Rendering participating media with bidirectional path tracing. In: Proceedings of the Eurographics Workshop on Rendering Techniques ’96, pp. 91–100. Springer, London (1996) Google Scholar
  14. 14.
    Pattanaik, S.N., Mudur, S.P.: Computation of global illumination in a participating medium by Monte Carlo simulation. J. Vis. Comput. Animat. 4, 133–152 (1993) CrossRefGoogle Scholar
  15. 15.
    Pauly, M., Kollig, T., Keller, A.: Metropolis light transport for participating media. In: Proceedings of the Eurographics Workshop on Rendering Techniques 2000, pp. 11–22. Springer, London (2000) Google Scholar
  16. 16.
    Ribardière, M.: Simulateur pour l’étude de la visibilité dans les environnements enfumés. Ph.D. thesis, Université de Rennes 1 (2010). URL http://tel.archives-ouvertes.fr/tel-00556718/fr/
  17. 17.
    Ribardière, M., Carré, S., Bouatouch, K.: Adaptive records for irradiance caching. Comput. Graph. Forum (2011). doi: 10.1111/j.1467-8659.2010.01846.x Google Scholar
  18. 18.
    Tabellion, E., Lamorlette, A.: An approximate global illumination system for computer generated films. In: SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pp. 469–476. ACM, New York (2004) CrossRefGoogle Scholar
  19. 19.
    Ward, G., Heckbert, P.: Irradiance gradients. In: Eurographics Rendering Workshop, Bristol, pp. 85–98 (1992) Google Scholar
  20. 20.
    Ward, G.J., Rubinstein, F.M., Clear, R.D.: A ray tracing solution for diffuse interreflection. In: SIGGRAPH ’88: Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques, pp. 85–92. ACM, New York (1988) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Mickaël Ribardière
    • 1
  • Samuel Carré
    • 2
  • Kadi Bouatouch
    • 1
  1. 1.IRISARennesFrance
  2. 2.CSTBNantesFrance

Personalised recommendations