Advertisement

The Visual Computer

, Volume 27, Issue 2, pp 161–171 | Cite as

Evaluation of a geometry-based knee joint compared to a planar knee joint

  • Anders Sandholm
  • Cédric Schwartz
  • Nicolas Pronost
  • Mark de Zee
  • Michael Voigt
  • Daniel Thalmann
Original Article

Abstract

Today neuromuscular simulations are used in several fields, such as diagnostics and planing of surgery, to get a deeper understanding of the musculoskeletal system. During the last year, new models and datasets have been presented which can provide us with more in-depth simulations and results. The same kind of development has occurred in the field of studying the human knee joint using complex three dimensional finite element models and simulations. In the field of musculoskeletal simulations, no such knee joints can be used. Instead the most common knee joint description is an idealized knee joint with limited accuracy or a planar knee joint which only describes the knee motion in a plane. In this paper, a new knee joint based on both equations and geometry is introduced and compared to a common clinical planar knee joint. The two kinematical models are analyzed using a gait motion, and are evaluated using the muscle activation and joint reaction forces which are compared to in-vivo measured forces. We show that we are able to predict the lateral, anterior and longitudinal moments, and that we are able to predict better knee and hip joint reaction forces.

Keywords

Knee joint Inverse kinematics and dynamics Joint reaction Computed muscular control OrthoLoad Validation Musculoskeletal model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allaire, S., Jacq, J.-J., Burdin, V., Roux, C.: Ellipsoid-constrained robust fitting of quadrics with application to the 3d morphological characterization of articular surfaces. In: Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, Aug. 2007, pp. 5087–5090 (2007) CrossRefGoogle Scholar
  2. 2.
    Anderson, F.C., Pandy, M.G.: Static and dynamic optimization solutions for gait are practically equivalent. J. Biomech. 34(2), 153–161 (2001) CrossRefGoogle Scholar
  3. 3.
    Arnold, E., Ward, S., Lieber, R., Delp, S.: A model of the lower limb for analysis of human movement. Ann. Biomed. Eng. 38, 269–279 (2010). doi: 10.1007/s10439-009-9852-5 CrossRefGoogle Scholar
  4. 4.
    Bergmann, G., Deuretzbacher, G., Heller, M., Graichen, F., Rohlmann, A., Strauss, J., Duda, G.N.: Hip contact forces and gait patterns from routine activities. J. Biomech. 34(7), 859–871 (2001) CrossRefGoogle Scholar
  5. 5.
    Castagno, P., Richards, J., Freenan, M., Lennon, N.: Comparison of 3-dimensional lower extremity kinematics during walking gait using two different marker sets. Gait Posture 3(2), 87–87 (1995) CrossRefGoogle Scholar
  6. 6.
    Damsgaard, M., Rasmussen, J., Christensen, S.T., Surma, E., de Zee, M.: Analysis of musculoskeletal systems in the anybody modeling system. Simul. Model. Pract. Theory 14(8), 1100–1111 (2006). SIMS 2004 CrossRefGoogle Scholar
  7. 7.
    Delp, S.L., Loan, J.P., Hoy, M.G., Zajac, F.E., Topp, E.L., Rosen, J.M.: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 37(8), 757–767 (1990) CrossRefGoogle Scholar
  8. 8.
    Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, D.G.: Opensim: Open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940–1950 (2007) CrossRefGoogle Scholar
  9. 9.
    DLima, D.D., Patil, S., Steklov, N., Chien, Shu, Colwell, C.W. Jr.: In vivo knee moments and shear after total knee arthroplasty. J. Biomech. 40(Suppl. 1), S11–S17 (2007). Interaction of Mechanics and Biology in Knee Joint Restoration and Regeneration CrossRefGoogle Scholar
  10. 10.
    Ellis, B.J., Lujan, T.J., Dalton, M.S., Weiss, J.A.: Medial collateral ligament insertion site and contact forces in the acl-deficient knee. J. Orthop. Res. 24(4), 800–810 (2006) CrossRefGoogle Scholar
  11. 11.
    Fernandez, J., Hunter, P.: An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool. Biomech. Model. Mechanobiol. 4, 20–38 (2005). doi: 10.1007/s10237-005-0072-0 CrossRefGoogle Scholar
  12. 12.
    Glitsch, U., Baumann, W.: The three-dimensional determination of internal loads in the lower extremity. J. Biomech. 30(11–12), 1123–1131 (1997) CrossRefGoogle Scholar
  13. 13.
    De Groote, F., De Laet, T., Jonkers, I., De Schutter, J.: Kalman smoothing improves the estimation of joint kinematics and kinetics in marker-based human gait analysis. J. Biomech. 41(16), 3390–3398 (2008) CrossRefGoogle Scholar
  14. 14.
    Heinlein, B., Kutzner, I., Graichen, F., Bender, A., Rohlmann, A., Halder, A.M., Beier, A., Bergmann, G.: Complete data of total knee replacement loading for level walking and stair climbing measured in vivo with a follow-up of 6–10 months. Clin. Biomech. 24(4), 315–326 (2009) CrossRefGoogle Scholar
  15. 15.
    Horsman, K.: The Twente lower extremity model. PhD thesis, Department of Engineering Technology, University of Twente, Netherlands (2007) Google Scholar
  16. 16.
    Moro-oka, T.A., Hamai, S., Miura, H., Shimoto, T., Higaki, H., Fregly, B.J., Iwamoto, Y., Banks, S.A.: Dynamic activity dependence of in vivo normal knee kinematics. J. Orthop. Res. 26(4), 428–462 (2007) CrossRefGoogle Scholar
  17. 17.
    Morrison, J.B.: Function of the knee joint in various activities. Biomed. Eng. 4, 573–580 (1969) MathSciNetGoogle Scholar
  18. 18.
    Kadaba, M.P., Ramakrishnan, H.K., Wootten, M.E., Gainey, J., Gorton, G., Cochran, G.V.: Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J. Orthop. Res. 7(6), 849–860 (1989) CrossRefGoogle Scholar
  19. 19.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME, J. Basic Eng. 82, 35–45 (1960) Google Scholar
  20. 20.
    Kurosawa, H., Walker, P.S., Abe, S., Garg, A., Hunter, T.: Geometry and motion of the knee for implant and orthotic design. J. Biomech. 18(7), 487–491, 493–499 (1985) CrossRefGoogle Scholar
  21. 21.
    Kutzner, I., Heinlein, B., Graichen, F., Bender, A., Rohlmann, A., Halder, A., Beier, A., Bergmann, G.: Loading of the knee joint during activities of daily living measured in vivo in five subjects. J. Biomech. 43(11), 2164–2173 (2010) CrossRefGoogle Scholar
  22. 22.
    Liu, M.Q., Anderson, F.C., Schwartz, M.H., Delp, S.L.: Muscle contributions to support and progression over a range of walking speeds. J. Biomech. 41(15), 3243–3252 (2008) CrossRefGoogle Scholar
  23. 23.
    Pioletti, D.P., Rakotomanana, L.R., Benvenuti, J.F., Leyvraz, P.F.: Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons. J. Biomech. 31(8), 753–757 (1998) CrossRefGoogle Scholar
  24. 24.
    Ramaniraka, N.A., Saunier, P., Siegrist, O., Pioletti, D.P.: Biomechanical evaluation of intra-articular and extra-articular procedures in anterior cruciate ligament reconstruction: a finite element analysis. Clin. Biomech. 22(3), 336–343 (2007) CrossRefGoogle Scholar
  25. 25.
    Sandholm, A., Pronost, N., Thalmann, D.: Motionlab: a matlab toolbox for extracting and processing experimental motion capture data for neuromuscular simulations. In: Magnenat-Thalmann, N. (ed.) Modelling the Physiological Human. Lecture Notes in Computer Science, vol. 5903, pp. 110–124. Springer, Berlin (2009) CrossRefGoogle Scholar
  26. 26.
    Schmid, J., Magnenat-Thalmann, N.: MRI bone segmentation using deformable models and shape priors. Med. Image Comput. Comput. Assist. Interv., 119–126 (2008) Google Scholar
  27. 27.
    Schmid, J., Sandholm, A., Chung, F., Thalmann, D., Delingette, H., Magnenat-Thalmann, N.: Musculoskeletal simulation model generation from MRI data sets and motion capture data. In: Magnenat-Thalmann, Nadia, Zhang, J.J.J., Feng, D.D.D. (eds.) Recent Advances in the 3D Physiological Human, pp. 3–19. Springer, London (2009) CrossRefGoogle Scholar
  28. 28.
    Taylor, W.R., Heller, M.O., Bergmann, G., Duda, G.N.: Tibio-femoral loading during human gait and stair climbing. J. Orthop. Res. 22(3), 625–632 (2004) CrossRefGoogle Scholar
  29. 29.
    Thelen, D.G., Anderson, F.C.: Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. J. Biomech. 39(6), 1107–1115 (2006) CrossRefGoogle Scholar
  30. 30.
    Walker, P.S., Rovick, J.S., Robertson, D.D.: The effects of knee brace hinge design and placement on joint mechanics. J. Biomech. 21(11), 965–967, 969–974 (1988) CrossRefGoogle Scholar
  31. 31.
    Weiss, J.A., Maker, B.N., Govindjee, S.: Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput. Methods Appl. Mech. Eng. 135(1–2), 107–128 (1996) zbMATHCrossRefGoogle Scholar
  32. 32.
    Yamaguchi, G.T., Zajac, F.E.: A planar model of the knee joint to characterize the knee extensor mechanism. J. Biomech. 22(1), 1–10 (1989) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Anders Sandholm
    • 1
  • Cédric Schwartz
    • 2
  • Nicolas Pronost
    • 1
    • 3
  • Mark de Zee
    • 2
  • Michael Voigt
    • 2
  • Daniel Thalmann
    • 1
  1. 1.Virtual Reality Lab.École Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Center for Sensory-Motor InteractionAalborg UniversityAalborgDenmark
  3. 3.Games and Virtual WorldsUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations