Skip to main content
Log in

A GPU framework for parallel segmentation of volumetric images using discrete deformable models

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Despite the ability of current GPU processors to treat heavy parallel computation tasks, its use for solving medical image segmentation problems is still not fully exploited and remains challenging. A lot of difficulties may arise related to, for example, the different image modalities, noise and artifacts of source images, or the shape and appearance variability of the structures to segment. Motivated by practical problems of image segmentation in the medical field, we present in this paper a GPU framework based on explicit discrete deformable models, implemented over the NVidia CUDA architecture, aimed for the segmentation of volumetric images. The framework supports the segmentation in parallel of different volumetric structures as well as interaction during the segmentation process and real-time visualization of the intermediate results. Promising results in terms of accuracy and speed on a real segmentation experiment have demonstrated the usability of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  2. Cates, J.E., Lefohn, A.E., Whitaker, R.T.: Gist: an interactive, GPU-based level set segmentation tool for 3D medical images. Med. Image Anal. 8(3), 217–231 (2004)

    Article  Google Scholar 

  3. Cootes, T.F., Hill, A., Taylor, C.J., Haslam, J.: The use of active shape models for locating structures in medical images. In: Proc. IPMI. LNCS, vol. 687, pp. 33–47. Springer, Berlin (1993)

    Google Scholar 

  4. Crassin, C., Neyret, F., Lefebvre, S., Eisemann, E.: Gigavoxels: ray-guided streaming for efficient and detailed voxel rendering. In: Proc. SIGGRAPH I3D, pp. 15–22. ACM, New York (2009)

    Google Scholar 

  5. Delingette, H.: General object reconstruction based on simplex meshes. Int. J. Comput. Vis. 32(2), 111–146 (1999)

    Article  Google Scholar 

  6. Georgii, J., Westermann, R.: Mass–spring systems on the GPU. Simul. Model. Pract. Theory 13, 693–702 (2005)

    Article  Google Scholar 

  7. Gilles, B., Magnenat-Thalmann, N.: Musculoskeletal MRI segmentation using multi-resolution simplex meshes with medial representations. Med. Image Anal. 14(3), 291–302 (2010)

    Article  Google Scholar 

  8. Gobbetti, E., Marton, F., Iglesias Guitián, J.: A single-pass GPU ray casting framework for interactive out-of-core rendering of massive volumetric data sets. Vis. Comput. 24(7–9), 797–806 (2008). Proc. CGI 2008

    Article  Google Scholar 

  9. Göddeke, D., Strzodka, R., Mohd-Yusof, J., McCormick, P., Buijssen, S., Grajewski, M., Turek, S.: Exploring weak scalability for FEM calculations on a GPU-enhanced cluster. Parallel Comput. 33(10–11), 685–699 (2007)

    Google Scholar 

  10. He, Z., Kuester, F.: GPU-based active contour segmentation using gradient vector flow. Adv. Vis. Comput. 4291, 191–201 (2006)

    Article  Google Scholar 

  11. Holden, M., Hill, D., Denton, E., Jarosz, J., Cox, T., Hawkes, D.: Voxel similarity measures for 3D serial MR brain image registration. In: Proc. IPMI. LNCS, vol. 1613, pp. 472–477. Springer, Berlin (1999)

    Google Scholar 

  12. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  13. Kienel, E., Brunnett, G.: Tile-based image forces for active contours on GPU. In: Proc. Eurographics, pp. 89–92. Eurographics Association, Geneva (2009)

    Google Scholar 

  14. Köhn, A., Drexl, J., Ritter, F., König, M., Peitgen, H.: GPU accelerated image registration in two and three dimensions. In: Proc. BVM, pp. 261–265. Springer, Berlin (2006)

    Google Scholar 

  15. Lahabar, S., Narayanan, P.J.: Singular value decomposition on GPU using CUDA. In: Proc. IPDPS, pp. 1–10. IEEE Comput. Soc., Los Alamitos (2009)

    Google Scholar 

  16. Lefohn, A.E., Cates, J.E., Whitaker, R.T.: Interactive, GPU-based level sets for 3D segmentation. In: Proc. MICCAI. LNCS, vol. 2878, pp. 564–572. Springer, Berlin (2003)

    Google Scholar 

  17. Liu, J., Sun, J., Shum, H.: Paint selection. ACM Trans. Graph. 28(3), 1–7 (2009)

    Google Scholar 

  18. Lorigo, L.M., Faugeras, O.D., Grimson, W.E.L., Keriven, R., Kikinis, R.: Segmentation of bone in clinical knee MRI using texture-based geodesic active contours. In: Proc. MICCAI. LNCS, vol. 1496, pp. 1195–1204. Springer, Berlin (1998)

    Google Scholar 

  19. Mosegaard, J., Herborg, P., Sorensen, T.: A GPU accelerated spring–mass system for surgical simulation. Stud. Health Technol. Inform. 111, 342–348 (2005)

    Google Scholar 

  20. Muyan-Ozcelik, P., Owens, J., Xia, J., Samant, S.: Fast deformable registration on the GPU: a CUDA implementation of demons. In: Proc. ICCSA, pp. 223–233. IEEE Comput. Soc., Los Alamitos (2008)

    Google Scholar 

  21. NVIDIA Corporation. NVIDIA CUDA Programming Guide, ver. 3.1 (2010)

  22. Olabarriaga, S., Smeulders, A.: Interaction in the segmentation of medical images: a survey. Med. Image Anal. 5(2), 127–142 (2001)

    Article  Google Scholar 

  23. Østergaard Noe, K., De Senneville, B., Elstrøm, U., Tanderup, K., Sørensen, T.: Acceleration and validation of optical flow based deformable registration for image-guided radiotherapy. Acta Oncol. 47(7), 1286–1293 (2008)

    Article  Google Scholar 

  24. Pan, W.: Improving interactive image segmentation via appearance propagation. In: Alliez, P., Magnor, M. (eds.) Proc. Eurographics, pp. 93–96. Eurographics Association, Geneva (2009)

    Google Scholar 

  25. Rodriguez-Navarro, J., Susin, A.: Non-structured meshes for cloth GPU simulation using FEM. In: Mendoza, C., Navazo, I. (eds.) Proc. VRIPHYS, pp. 1–7. Eurographics Association, Geneva (2006)

    Google Scholar 

  26. Santner, J., Unger, M., Pock, T., Leistner, C., Saffari, A., Bischof, H.: Interactive texture segmentation using random forests and total variation. In: Proc. BMVC. BMVA Press, London (2009, to appear)

  27. Schmid, J., Magnenat-Thalmann, N.: MRI bone segmentation using deformable models and shape priors. In: Proc. MICCAI. LNCS, vol. 5241, pp. 119–126. Springer, Berlin (2008)

    Google Scholar 

  28. Schmid, J., Nijdam, N., Han, A., Kim, J., Magnenat-Thalmann, N.: Interactive segmentation of volumetric medical images for collaborative telemedicine. In: Modelling the Physiological Human, Proc. 3DPH. LNCS, vol. 5903, pp. 13–24. Springer, Berlin (2009)

    Chapter  Google Scholar 

  29. Schmid, J., Kim, J., Magnenat-Thalmann, N.: Extreme leg motion analysis of professional ballet dancers via MRI segmentation of multiple leg postures. Int. J. Comput. Assist. Radiol. Surg. (2010). doi:10.1007/s11548-010-0474-z

    Google Scholar 

  30. Sebastian, T., Tek, H., Crisco, J., Kimia, B.: Segmentation of carpal bones from CT images using skeletally coupled deformable models. Med. Image Anal. 7(1), 21–45 (2003)

    Article  Google Scholar 

  31. Sharp, G., Kandasamy, N., Singh, H., Folkert, M.: GPU-based streaming architectures for fast cone-beam CT image reconstruction and demons deformable registration. Phys. Med. Biol. 52(19), 5771–5784 (2007)

    Article  Google Scholar 

  32. Sherbondy, A., Houston, M., Napel, S.: Fast volume segmentation with simultaneous visualization using programmable graphics hardware. In: Proc. VIS, p. 23. IEEE Comput. Soc., Washington (2003)

    Google Scholar 

  33. Snel, J., Venema, H., Grimbergen, C.: Deformable triangular surfaces using fast 1-D radial Lagrangian dynamics-segmentation of 3-D MR and CT images of the wrist. IEEE Trans. Med. Imaging 21(8), 888–903 (2002)

    Article  Google Scholar 

  34. Stoev, S., Straßer, W.: Extracting regions of interest applying a local watershed transformation. In: Proc. Conf. Visualization, pp. 21–28. IEEE Comput. Soc., Los Alamitos (2000)

    Google Scholar 

  35. Strzodka, R., Droske, M., Rumpf, M.: Image registration by a regularized gradient flow. A streaming implementation in dx9 graphics hardware. Computing 73(4), 373–389 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Tejada, E., Ertl, T.: Large steps in GPU-based deformable bodies simulation. Simul. Model. Pract. Theory 13(8), 703–715 (2005)

    Article  Google Scholar 

  37. Teßmann, M., Eisenacher, C., Enders, F., Stamminger, M., Hastreiter, P.: GPU accelerated normalized mutual information and B-spline transformation. In: Botha, C., Kindlmann, G., Niessen, W., Preim, B. (eds.) Proc. Eurographics Workshop VCBM, pp. 117–124. Eurographics Association, Delft (2008)

    Google Scholar 

  38. Udupa, J.K.: Interactive segmentation and boundary surface formation for 3-d digital images. Comput. Graph. Image Process. 18(3), 213–235 (1982)

    Article  MATH  Google Scholar 

  39. Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 376–380 (1991)

    Article  Google Scholar 

  40. Unger, M., Pock, T., Trobin, W., Cremers, D., Bischof, H.: Tvseg—interactive total variation based image segmentation. In: Proc. BMVC. BMVA Press, London (2008)

    Google Scholar 

  41. Van Ginneken, B., Heimann, T., Styner, M.: 3D segmentation in the clinic: a challenge grand. In: Heimann, T., Styner, M., Van Ginneken, B. (eds.) Proc. MICCAI Workshop 3D Segmentation in the Clinic: A Grand Challenge, pp. 7–15. Springer, Berlin (2007)

    Google Scholar 

  42. Verlet, L.: Computer “Experiments” on classical fluids. I. Thermodynamical properties of Lennard–Jones molecules. Phys. Rev. 159(1), 98–103 (1967)

    Article  Google Scholar 

  43. Walters, J., Balu, V., Kompalli, S., Chaudhary, V., Buffalo, N.: Evaluating the use of GPUs in liver image segmentation and HMMER database searches. In: Proc. IPDPS, pp. 1–12. IEEE Comput. Soc., Los Alamitos (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Schmid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, J., Iglesias Guitián, J.A., Gobbetti, E. et al. A GPU framework for parallel segmentation of volumetric images using discrete deformable models. Vis Comput 27, 85–95 (2011). https://doi.org/10.1007/s00371-010-0532-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-010-0532-0

Keywords

Navigation