The Visual Computer

, Volume 26, Issue 10, pp 1283–1300 | Cite as

SkelTre

Robust skeleton extraction from imperfect point clouds
  • Alexander Bucksch
  • Roderik Lindenbergh
  • Massimo Menenti
Original Article

Abstract

Terrestrial laser scanners capture 3D geometry of real world objects as a point cloud. This paper reports on a new algorithm developed for the skeletonization of a laser scanner point cloud. The skeletonization algorithm proposed in this paper consists of three steps: (i) extraction of a graph from an octree organization, (ii) reduction of the graph to a skeleton, and (iii) embedding of the skeleton into the point cloud. For these three steps, only one input parameter is required. The results are validated on laser scanner point clouds representing 2 classes of objects; first on botanic trees as a special application and secondly on popular arbitrary objects. The presented skeleton found its first application in obtaining botanic tree parameters like length and diameter of branches and is presented here in a new, generalized version. Its definition as Reeb Graph, proofs the usefulness of the skeleton for applications like shape analysis. In this paper we show that the resulting skeleton contains the Reeb Graph and investigate the practically relevant parameters: centeredness and topological correctness. The robustness of this skeletonization method against undersampling, varying point density and systematic errors of the point cloud is demonstrated on real data examples.

Keywords

Skeletonization Point cloud Laser scanning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amenta, N., Choi, S., Kolluri, R.: The power crust, unions of balls and the medial axis transform. Comput. Geom., Theory Appl. 19(2–3), 127–153 (2001) MATHMathSciNetGoogle Scholar
  2. 2.
    Arthur, D., Vassilvitskii, S.: On the worst case complexity of the k-means method. Technical Report, Stanford 698 (2005) Google Scholar
  3. 3.
    Blum, H.: A transformation for extracting new descriptors of shape. In: Proceedings Models for Perception of Speech and Visual Form, pp. 362–380 (1967) Google Scholar
  4. 4.
    Bucksch, A., Lindenbergh, R.: Campino—a skeletonization method for point cloud processing. ISPRS J. Photogramm. Remote Sens. 63, 115–127 (2008) CrossRefGoogle Scholar
  5. 5.
    Bucksch, A., Lindenbergh, R., Menenti, M.: Skeltre—Fast skeletonization of imperfect point clouds of botanic trees. In: Proceedings 3D Object Retrieval Workshop 2009 (3DOR), pp. 13–20 (2009) Google Scholar
  6. 6.
    Chen, H.H., Huang, T.S.: A survey of construction and manipulation of octrees. Comput. Vis. Graph. Image Process. Arch. 43(3), 409–431 (1988) CrossRefGoogle Scholar
  7. 7.
    Cole-McLaughlin, K., Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Loops in Reeb graphs of 2-manifolds. Discrete Comput. Geom. 32(2), 231–244 (2004) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cornea, N.D., Min, P.: Curve-skeleton properties, applications, and algorithms. IEEE Trans. Vis. Comput. Graph. 13(3), 530–548 (2007) CrossRefGoogle Scholar
  9. 9.
    Côtè, J.F., Widlowski, J.L., Fournier, R.A., Verstraete, M.M.: The structural and radiative consistency of three-dimensional tree reconstructions from terrestrial lidar. Remote Sens. Environ. 113(5), 1067–1081 (2009) CrossRefGoogle Scholar
  10. 10.
    Dey, T.K., Sun, J.: Defining and computing curve-skeletons with medial geodesic function. In: Proceedings 4th Eurographics Symposium on Geometry Processing, pp. 143–152 (2006) Google Scholar
  11. 11.
    Foreman, R.: Morse theory for cell complexes. Adv. Math. 134, 90–145 (1998) CrossRefMathSciNetGoogle Scholar
  12. 12.
    Gorte, B.: Skeletonization of laser-scanned trees in the 3d raster domain. In: Proceedings 3DGeoInfo 2006 (2006) Google Scholar
  13. 13.
    Gorte, B., Pfeifer, N.: Structuring laser-scanned trees using 3D mathematical morphology. Int. Arch. Photogramm. Remote Sens. XXXV(B5), 929–933 (2004) Google Scholar
  14. 14.
    Milnor, J.: Morse Theory. Princeton University Press, Princeton (1963) MATHGoogle Scholar
  15. 15.
    Musser, D., Saini, A.: Stl Tutorial and Reference Guide: C++ Programming with the Standard Template Library. Addison-Wesley Professional Computing Series. Addison-Wesley, Reading (1996) Google Scholar
  16. 16.
    Palagyi, K., Sorantin, E., Balogh, E., Kuba, A., Halmai, C., Erdohelyi, B., Hausegger, K.: A sequential 3D thinning algorithm and its medical applications. In: Proceedings 17th International Conference Information Processing in Medical Imaging, pp. 409–415 (2001) Google Scholar
  17. 17.
    Pascucci, V., Scorzelli, G., Bremer, P.T., Mascarenhas, A.: Robust on-line computation of Reeb graphs: simplicity and speed. ACM Trans. Graph. 26(3), 58 (2007) CrossRefGoogle Scholar
  18. 18.
    Pemmaraju, S., Skiena, S.: Computational Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Cambridge University Press, Cambridge (2003) MATHGoogle Scholar
  19. 19.
    Reeb, G.: Sur les points singuliers d’une forme de Pfaff complèment intégrable ou d’une fonction numérique. C. R. Acad. Sci. 222, 847–849 (1946) MATHMathSciNetGoogle Scholar
  20. 20.
    Saito, T., Toriwaki, J.: New algorithms for Euclidean distance transformation of an n-dimensional digitized picture with applications. Pattern Recogn. 27, 1551–1565 (1994) CrossRefGoogle Scholar
  21. 21.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982) MATHGoogle Scholar
  22. 22.
    Shan, J., Todd, C. (eds.): Topographic Laser Ranging and Scanning. CRC Press, Boca Raton (2008) Google Scholar
  23. 23.
    Shinagawa, Y., Kunii, T.L.: Surface coding based on Morse theory. IEEE Comput. Graph. Appl. 11, 66–78 (1991) CrossRefGoogle Scholar
  24. 24.
    Verroust, A., Lazarus, F.: Extracting skeletal curves from 3d scattered data. Vis. Comput. 16, 15–25 (2000) MATHCrossRefGoogle Scholar
  25. 25.
    Xu, H., Gossett, N., Chen, B.: Knowledge and heuristic-based modeling of laser-scanned trees. ACM Trans. Graph. 26(4), 19 (2007) CrossRefGoogle Scholar
  26. 26.
    Yan, D.M., Wintz, J., Mourrain, B., Wang, W., Boudon, F., Godin, C.: Efficient and robust branch model reconstruction from laser scanned points. In: Proceedings 11th IEEE International Conference on Computer-Aided Design and Computer Graphics (2009) Google Scholar
  27. 27.
    Zhou, Y., Kaufman, A., Toga, A.W.: Three-dimensional skeleton and centerline generation based on an approximate minimum distance field. Vis. Comput. 14(7), 303–314 (1998) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Alexander Bucksch
    • 1
  • Roderik Lindenbergh
    • 1
  • Massimo Menenti
    • 1
  1. 1.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations