Skip to main content
Log in

Collaborative telemedicine for interactive multiuser segmentation of volumetric medical images

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Telemedicine has evolved rapidly in recent years to enable unprecedented access to digital medical data, such as with networked image distribution/sharing and online (distant) collaborative diagnosis, largely due to the advances in telecommunication and multimedia technologies. However, interactive collaboration systems which control editing of an object among multiple users are often limited to a simple “locking” mechanism based on a conventional client/server architecture, where only one user edits the object which is located in a specific server, while all other users become viewers. Such systems fail to provide the needs of a modern day telemedicine applications that demand simultaneous editing of the medical data distributed in diverse local sites. In this study, we introduce a novel system for telemedicine applications, with its application to an interactive segmentation of volumetric medical images. We innovate by proposing a collaborative mechanism with a scalable data sharing architecture which makes users interactively edit on a single shared image scattered in local sites, thus enabling collaborative editing for, e.g., collaborative diagnosis, teaching, and training. We demonstrate our collaborative telemedicine mechanism with a prototype image editing system developed and evaluated with a user case study. Our result suggests that the ability for collaborative editing in a telemedicine context can be of great benefit and hold promising potential for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Constantinescu, L., Kim, J., Chan, C., Feng, D.: Automatic mobile device synchronization and remote control system for high-performance medical applications. In: IEEE Proc. Engineering in Medicine and Biology Society (EMBS), pp. 2799–2802 (2007)

  2. Costa, M.J., Delingette, H., Novellas, S., Ayache, N.: Automatic segmentation of bladder and prostate using coupled 3D deformable models. In: Int. Conf. on medical image computing and computer assisted intervention (MICCAI), pp. 252–260 (2007)

  3. Delaney, D., Ward, T., McLoone, S.: On consistency and network latency in distributed interactive applications – a survey. Presence, Part I 15(4), 465–482 (2006)

    Article  Google Scholar 

  4. Delingette, H.: General object reconstruction based on simplex meshes. Int. J. Comput. Vis. 32, 111–146 (1999)

    Article  Google Scholar 

  5. Dollimore, J., Kindberg, T., Coulouris, G.: Distributed Systems: Concepts and Design. Addison-Wesley, Reading (2005)

    Google Scholar 

  6. Eugster, P., Felber, P., Guerraoui, R., Kermarrec, A.: The many faces of publish/subscribe. ACM Comput. Surv. 35(2), 114–131 (2003)

    Article  Google Scholar 

  7. Gilles, B., Moccozet, L., Magnenat-Thalmann, N.: Anatomical modelling of the musculoskeletal system from MRI. In: Larsen, R., Nielsen, M., Sporring, J. (eds) MICCAI 2006, LNCS, pp. 289–296 (2006)

  8. Han, S., Lee, D., Ko, I.: A deputy object based presentation semantics split application model for synchronous collaboration in ubiquitous computing environments. In: Proceedings of the Third International Conference on Collaboration Technologies, July (2007)

  9. Heimann, T., Munzing, S., Meinzer, H., Wolf, I.: A shape-guided deformable model with evolutionary algorithm initialization for 3D soft tissue segmentation. In: N. Karssemeijer, B. Lelieveldt (eds) Proc. Int. Conf. Information Processing in Medical Imaging (IPMI), pp. 1–12 (2007)

  10. Heimann, T., Meinzer, H.: Statistical shape models for 3D medical image segmentation: A review. Med. Image Anal. 13, 543–563 (2009)

    Article  Google Scholar 

  11. Ibanez, L., Schroeder, W., Ng, L., Cates, J., et al.: The ITK software guide. Kitware (2003)

  12. Kainmuller, D., Lamecker, H., Zachow, S., Hege, H.-C.: An articulated statistical shape model for accurate hip joint segmentation. In: Proc. IEEE Engineering in Medicine and Biology Conference (EMBC), pp. 6345–6351 (2009)

  13. Lee, D., Lim, M., Han, S., Lee, K.: ATLAS: A scalable network framework for distributed virtual environments. Presence 16(2), 125–156 (2007)

    Article  Google Scholar 

  14. Lewis, J.: IBM computer usability satisfaction questionnaires: psychometric evaluation and instructions for use. Int. J. Hum.–Comput. Interact. 7(1), 57–78 (1995)

    Article  Google Scholar 

  15. Marescaux, J., Leroy, J., Gagner, M., Rubino, F., Mutter, D., Vix, M., Butner, S.E., Smith, M.K.: Transatlantic robot-assisted telesurgery. Nature 413, 379–380 (2001)

    Article  Google Scholar 

  16. Morillo, P., Orduna, J.M., Fernandez, M., Duato, J.: Improving the performance of distributed virtual environment systems. IEEE Trans. Parallel Distrib. Syst. 16(7), 337–649 (2005)

    Article  Google Scholar 

  17. Olabarriaga, S., Smeulders, A.: Interaction in the segmentation of medical images: A survey. Med. Image Anal. 5, 127–142 (2001)

    Article  Google Scholar 

  18. Park, S., Kim, W., Ihm, I.: Mobile collaborative medical display system. Comput. Methods Programs Biomed. 89(3), 248–260 (2008)

    Article  Google Scholar 

  19. Rialle, V., Lamy, J.B., Noury, N., Bajolle, L.: Telemonitoring of patients at home: a software agent approach. Comput. Methods Programs Biomed. 72(3), 257–268 (2003)

    Article  Google Scholar 

  20. Schmid, J., Magnenat-Thalmann, N.: MRI bone segmentation using deformable models and shape priors. In: Metaxas, D., Axel, L., Szekely, G., Fichtinger, G. (eds) MICCAI 2008, Part I. LNCS, pp. 119–126 (2008)

  21. Schmid, J., Nijdam, N., Han, S., Kim, J., Magnenat-Thalmann, N.: Interactive segmentation of volumetric medical images for collaborative telemedicine. In: Modelling the Physiological Human, Proc. 3D Physiological Human Workshop 5903, pp. 13–24 (2009)

  22. Simmross-Wattenberg, F., Carranza-Herrezuelo, N., Palacios-Camarero, C., Casaseca-de-la-Higuera, P., Martín-Fernández, M., Aja-Fernández, S., Ruiz-Alzola, J., Westin, C., Alberola-López, C.: Group-Slicer: A collaborative extension of 3D-Slicer. J. Biomed. Informatics 38(6), 431–442 (2005)

    Article  Google Scholar 

  23. Singhal, S., Zida, M.: Networked Virtual Environments: Design and Implementation. Addison-Wesley, Reading (1999)

    Google Scholar 

  24. Snel, J., Venema, H., Grimbergen, C.: Deformable triangular surfaces using fast 1-D radial Lagrangian dynamics-segmentation of 3-D MR and CT images of the wrist. IEEE Trans. Med. Imaging 21, 888–903 (2002)

    Article  Google Scholar 

  25. Volino, P., Magnenat-Thalmann, N.: Implementing fast cloth simulation with collision response. Comput. Graph. Int. 2000, 257–266 (2000)

    Google Scholar 

  26. Wootton, R., Craig, J., Patterson, V.: Introduction to Telemedicine, 2nd edn. The Royal Society of Medicine Press Ltd, London (2006)

    Google Scholar 

  27. Zhang, J., Stahl, J.N., Huang, H.K., Zhou, X., Lou, S.L., Song, K.S.: Real-time teleconsultation with high-resolution and large-volume medical images for collaborative healthcare. IEEE Trans. Inf. Tech. Biomed. 4(2), 178–185 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seunghyun Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, S., Nijdam, N.A., Schmid, J. et al. Collaborative telemedicine for interactive multiuser segmentation of volumetric medical images. Vis Comput 26, 639–648 (2010). https://doi.org/10.1007/s00371-010-0445-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-010-0445-y

Keywords

Navigation