Skip to main content

Modelling deformations in car crash animation


In this paper, we present a prototype of a deformation engine to efficiently model and render the damaged structure of vehicles in crash scenarios. We introduce a novel system architecture to accelerate the computation, which is traditionally an extremely expensive task. We alter a rigid body simulator to predict trajectories of cars during a collision and formulate a correction procedure to estimate the deformations of the collapsed car structures within the contact area. Non-linear deformations are solved based on the principle of energy conservation. Large plastic deformations resulting from collisions are modelled as a weighted combination of deformation examples of beams which can be produced using classical mechanics.

This is a preview of subscription content, access via your institution.


  1. Ambrósio, J.: Contact and impact models for vehicle crashworthiness simulation. Int. J. Crash 8(1), 73–86 (2003)

    Article  Google Scholar 

  2. Baraff, D.: Dynamic Simulation of non-penetrating rigid bodies. PhD thesis, Computer Science Department, Cornell University (1992)

  3. Baraff, D.: Rigid body simulation. In: Physically Based Modeling: SIGGRAPH 2001 Course 25 (2001)

  4. Barr, A.H.: Global and local deformations of solid primitives. In: SIGGRAPH’84, pp. 21–30 (1984)

  5. Belytschko, T.: On computational methods for crashworthiness. In: Proceedings of the 7th International Conference on Vehicle Structural Mechanics, SAE, Detroit, pp. 93–102 (1988)

  6. Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., Grinspun, E.: Discrete elastic rods. In: SIGGRAPH ’08, pp. 1–12 (2008)

  7. Bertails, F., Audoly, B., Cani, M., Querleux, B., Leroy, F., Lévêque, J.: Super-helices for predicting the dynamics of natural hair. In: SIGGRAPH’06, pp. 1180–1187 (2006)

  8. Bridson, B., Fedkiw, R., Anderson, J.: Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. 21(3), 594–603 (2002)

    Article  Google Scholar 

  9. Chang, J., Shepherd, D., Zhang, J.J.: Cosserat-beam-based dynamic response modelling. Comput. Anim. Virtual Worlds 18(4–5), 429–436 (2007)

    Article  Google Scholar 

  10. Chang, J., Zhang, J.J.: Mesh-free deformations. Comput. Anim. Virtual Worlds 15(3–4), 211–217 (2004)

    Article  Google Scholar 

  11. Coquillart, S.: Extended free-form deformation: a sculpturing tool for 3D geometric modelling. In: SIGGRAPH’90, pp. 187–196 (1990)

  12. GamesInvestor: Playing for Keeps—Challenges to Sustaining a World Class UK Games Sector, Monograph 2—Intellectual Property, Game Investor Consulting Ltd. (2007). Accessed Decemeber 2008

  13. Genta, G.: Motor Vehicle Dynamics: Modelling and Simulation. World Scientific, London (1997)

    Google Scholar 

  14. Gladden, J.R., Nandzy, N.Z., Belmonte, A., Villermaux, E.: Dynamic buckling and fragmentation in brittle rods. Phys. Rev. Lett. 94(035503), 1–4 (2005)

    Google Scholar 

  15. Grégoire, M., Schömer, E.: Interactive simulation of one-dimensional flexible parts. In: Proceedings of the 2006 ACM Symposium on Solid and Physical Modelling, pp. 95–103 (2006)

  16. Grzesikiewicz, G., Janusz, J., Krzysztof, S.: Chosen aspects of the crush energy determination. In: EVU-Annual Meeting 2007, European Association for Accident Research and Analysis (2007). Accessed December 2008

  17. Happian-Smith, J.: An Introduction to Modern Vehicle Design. Reed Educational and Professional Publishing Ltd., Oxford (2002)

    Google Scholar 

  18. Irving, G., Schroeder, C., Fedkiw, R.: Volume conserving finite element simulations of deformable models. ACM Trans. Graph. 26(3), article 13 (2007)

    Article  Google Scholar 

  19. Jones, N.: Structural Impact. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  20. Kuschfeldt, S., Holzner, M., Sommer, O., Ertl, T.: Efficient visualization of crash-worthiness simulations. IEEE Comput. Graph. Appl. 18(4), 60–65 (1998)

    Article  Google Scholar 

  21. LSTC, LS-DYNA, Livermore Software Technology Corporation (2008). Accessed December 2008

  22. Miller, G.: The motion dynamics of snakes and worms. In: SIGGRAPH’88, pp. 169–178 (1988)

  23. Müller, M., Dorsey, J., McMillan, L., Jagnow, R., Cutler, B.: Stable real-time deformations. In: SCA’02, pp. 49–54 (2002)

  24. Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., Alexa, M.: Point-based animation of elastic, plastic and melting objects. In: SCA’04, pp. 141–151 (2004)

  25. Müller, M., Heidelberger, B., Teschner, M., Gross, M.: Meshless deformations based on shape matching. In: SIGGRAPH ’05, pp. 471–478 (2005)

  26. NCAC: NCAC Models (2009). Accessed May 2009

  27. Nilsson, K., Sørensen, N.J.: A study of plastic waves during dynamic buckling of ductile slabs. Model. Simul. Mater. Sci. Eng. 10, 569–580 (2002)

    Article  Google Scholar 

  28. Pai, D.: Strands: Interactive simulation of thin solids using Cosserat models. Comput. Graph. Forum 21(3), 347–352 (2002)

    Article  Google Scholar 

  29. Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., Guibas, L.: Meshless animation of fracturing solids. In: SIGGRAPH ’05, pp. 957–964 (2005)

  30. Pseudo Interactive: Crash Project (2008). Accessed December 2008

  31. Rodrigues, T., Pires, R., Dias, J.M.: D4MD: Deformation system for a vehicle simulation game. In: Proc. ACM Sigchi ACE 2005, pp. 330–333. ACM, New York (2005)

    Chapter  Google Scholar 

  32. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. In: SIGGRAPH’86, pp. 151–160 (1986)

  33. Smith, L.: Alex Ward: real physics don’t always make great gameplay, 1up news (2006). Accessed December 2008

  34. Sousa, L., Veríssimo, P., Ambrósio, J.: Development of generic multibody road vehicle models for crashworthiness. Multibody Syst. Dyn. 19, 133–158 (2008)

    MATH  Article  Google Scholar 

  35. Spillmann, J., Teschner, M.: CoRdE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects. In: SCA’07, pp. 63–72 (2007)

  36. Teran, J., Sifakis, E., Irving, G., Fedkiw, R.: Robust quasistatic finite elements and flesh simulation. In: SCA ’05, pp. 181–190 (2005)

  37. Terzopoulos, D., Fleischer, K.: Modeling inelastic deformation: viscoelasticity, plasticity, fracture. In: SIGGRAPH’88, pp. 269–278 (1988)

  38. Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. In: SIGGRAPH’87, pp. 205–214 (1987)

  39. Vaughn, D.G., Canning, J.M., Hutchinson, J.W.: Coupled plastic wave propagation and column buckling. J. Appl. Mech. 72(7), 139–146 (2005)

    MATH  Article  Google Scholar 

  40. Vaughn, D.G., Hutchinson, J.W.: Bucklewaves. Eur. J. Mech. A, Solids 25, 1–12 (2006)

    MATH  Article  MathSciNet  Google Scholar 

  41. Wiedermann, J.: 500 3D-objects, Taschen (2002)

  42. Wojtan, C., Turk, G.: Fast viscoelastic behavior with thin features. In: SIGGRAPH ’08, pp. 1–8 (2008)

  43. York, R., Day, T.R.: The DyMESH method for three-dimensional multi-vehicle collision simulation. SAE Paper 1999-01-0104, pp. 1–18 (1999)

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jian J. Zhang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chang, J., Zhang, J.J. & Zia, R. Modelling deformations in car crash animation. Vis Comput 25, 1063 (2009).

Download citation

  • Published:

  • DOI:


  • Crash
  • Animation
  • Deformation
  • Physically based modelling