Skip to main content
Log in

Good-visibility maps visualization

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Given a set V of viewpoints and a set S of obstacles in an environmental space, the good-visibility depth of a point q in relation to V and S is a measure of how deep or central q is with respect to the points in V that see q while minding the obstacles of S. The good-visibility map determined by V and S is the subdivision of the environmental space in good-visibility regions where all points have the same fixed good-visibility depth. In this paper we present algorithms for computing and efficiently visualizing, using graphics hardware capabilities, good-visibility maps in the plane as well as on triangulated terrains, where the obstacles are the terrain faces. Finally, we present experimental results obtained with the implementation of our algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abellanas, M., Canales, S., Hernández, G.: Buena iluminación. In: Actas de las IV Jornadas de Matemática Discreta y Algorítmica, pp. 239–246 (2004)

  2. Abellanas, M., Bajuelos, A., Hernández, G., Matos, I.: Good illumination with limited visibility. In: Proceedings of International Conference of Numerical Analysis and Applied Mathematics, pp. 35–38. Wiley/VCH Verlag, New York (2005)

    Google Scholar 

  3. Abellanas, M., Bajuelos, A.L., Matos, I.: Good θ-illumination of points. In: Proceedings of the 23rd European Workshop on Computational Geometry, pp. 61–64 (2007)

  4. Abellanas, M., Bajuelos, A.L., Matos, I.: Some problems related to good illumination. In: Proceedings of 7th Annual International Workshop on Computational Geometry and Applications (CGA’07), ICCSA 2007. Lecture Notes in Computer Science, vol. 4705, pp. 1–14. Springer, Berlin (2007)

    Google Scholar 

  5. Aichholzer, O., Fabila-Monroy, R., Flores-Peñaloza, D., Hackl, T., Huemer, C., Urrutia, J., Vogtenhuber, B.: Modem illumination of monotone polygons. In: Proceedings of the 25th European Workshop on Computational Geometry EuroCG ’09, pp. 167–170 (2009)

  6. Asano, T., Ghosh, S.K., Shermer, T.C.: Visibility in the Plane. Handbook of Computational Geometry. North-Holland, Amsterdam (2000)

    Google Scholar 

  7. Balaban, I.J.: An optimal algorithm for finding segments intersections. In: SCG ’95: Proceedings of the Eleventh Annual Symposium on Computational Geometry, pp. 211–219. ACM, New York (1995)

    Chapter  Google Scholar 

  8. Ben-Moshe, B., Carmi, P., Katz, M.J.: Approximating the visible region of a point on a terrain. GeoInformatica 12(1), 21–36 (2008)

    Article  Google Scholar 

  9. Canales, S.: Métodos heurísticos en problemas geométricos, visibilidad, iluminación y vigilancia, Ph.D. thesis. Universidad Politécnica de Madrid (2004)

  10. Coll, N., Fort, M., Madern, N., Sellarès, J.A.: Multi-visibility maps of triangulated terrains. Int. J. Geographic. Inf. Sci. 21(10), 1115–1134 (2007)

    Article  Google Scholar 

  11. Coll, N., Madern, N., Sellares, J.A.: Drawing good-visibility maps with graphics hardware. In: Proceedings of Computer Graphics International Conference (CGI), pp. 286–293 (2008)

  12. Fisher, I., Gotsman, C.: Drawing depth contours with graphics hardware. In: Proceedings of the 18th Annual Canadian Conference on Computational Geometry, CCCG 2006, Queen’s University, Ontario, Canada, 14–16 August 2006

  13. General-purpose computation on graphics hardware webpage http://www.gpgpu.org

  14. Ghosh, S.K.: Visibility Algorithms in the Plane. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  15. Katz, M.J., Overmars, M.H., Sharir, M.: Efficient hidden surface removal for objects with small union size. Comput. Geom. Theory Appl. 2, 223–234 (1992)

    MATH  MathSciNet  Google Scholar 

  16. Krishnan, S., Mustafa, N.H., Venkatasubramanian, S.: Hardware-assisted computation of depth contours. In: SODA ’02: Proceedings of the 13th ACM-SIAM Symposium on Discrete Algorithms, pp. 558–567. SIAM, Philadelphia (2002)

    Google Scholar 

  17. Miller, K., Ramaswami, S., Rousseeuw, P., Sellarès, J.A., Souvaine, D., Streinu, I., Struyf, A.: Efficient computation of location depth contours by methods of computational geometry. J. Stat. Comput. 13, 153–162 (2003)

    Article  Google Scholar 

  18. Miller, K., Ramaswami, S., Rousseeuw, P., Sellarès, J.A., Souvaine, D., Streinu, I., Struyf, A.: Fast implementation of depth contours using topological sweep. Stat. Comput. 153–162 (2003)

  19. Mustafa, N., Krishnan, S., Venkatasubramanian, S.: Statistical data depth and the graphics hardware. In: Liu, R., Serfling, R., Souvaine, D. (eds.) Data Depth: Robust Multivariate Analysis. Computational Geometry and Applications, vol. 72, pp. 223–246. AMS, Providence (2006)

    Google Scholar 

  20. Okamoto, Y., Uno, T., Christ, D., Hoffmann, M.: Improved bounds for wireless localization. In: SWAT ’08: Proceedings of the 11th Scandinavian Workshop on Algorithm Theory, pp. 77–89. Springer, Berlin (2008)

    Google Scholar 

  21. O’Rourke, J.: Visibility. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, pp. 643–664. CRC Press, Boca Raton (2004)

    Google Scholar 

  22. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., Purcell, T.J.: A survey of general-purpose computation on graphics hardware. Comput. Graph. Forum 26(1), 80–113 (2007)

    Article  Google Scholar 

  23. Reif, J.H., Sen, S.: An efficient output-sensitive hidden surface removal algorithm and its parallelization. In: SCG ’88: Proceedings of the Fourth Annual Symposium on Computational Geometry, pp. 193–200. ACM, New York (1988)

    Chapter  Google Scholar 

  24. Tseng, Y., Wang, Y., Hu, C.: Efficient placement and dispatch of sensors in a wireless sensor network. IEEE Trans. Mobile Comput. 7(2), 262–274 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narcís Madern.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coll, N., Madern, N. & Sellarès, J.A. Good-visibility maps visualization. Vis Comput 26, 109–120 (2010). https://doi.org/10.1007/s00371-009-0380-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-009-0380-y

Keywords

Navigation