The Visual Computer

, Volume 25, Issue 5–7, pp 411–421 | Cite as

Streaming surface sampling using Gaussian ε-nets

  • Pablo Diaz-Gutierrez
  • Jonas Bösch
  • Renato Pajarola
  • M. Gopi
Original Article


We propose a robust, feature preserving and user-steerable mesh sampling algorithm, based on the one-to-many mapping of a regular sampling of the Gaussian sphere onto a given manifold surface. Most of the operations are local, and no global information is maintained. For this reason, our algorithm is amenable to a parallel or streaming implementation and is most suitable in situations when it is not possible to hold all the input data in memory at the same time. Using ε-nets, we analyze the sampling method and propose solutions to avoid shortcomings inherent to all localized sampling methods. Further, as a byproduct of our sampling algorithm, a shape approximation is produced. Finally, we demonstrate a streaming implementation that handles large meshes with a small memory footprint.


Normal quantization Surface sampling Shape approximation Epsilon-nets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., Taubin, G.: The ball-pivoting algorithm for surface reconstruction. IEEE Trans. Vis. Comput. Graph. 5(4), 349–359 (1999) CrossRefGoogle Scholar
  2. 2.
    Clarkson, K.L.: Building triangulations using ε-nets. In: SIGACT Symposium. ACM, New York (2006) Google Scholar
  3. 3.
    Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. ACM Trans. Graph. 23(3), 905–914 (2004). CrossRefGoogle Scholar
  4. 4.
    Dey, T.K.: Curve and Surface Reconstruction: Algorithms with Mathematical Analysis. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2006). Google Scholar
  5. 5.
    Dong, W., Li, J., Kuo, J.: Fast mesh simplification for progressive transmission. In: Proceedings International Conference on Multimedia and Expo ICME 2000. IEEE Press, New York (2000) Google Scholar
  6. 6.
    Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proceedings ACM SIGGRAPH, pp. 209–216. ACM, New York (1997) Google Scholar
  7. 7.
    Gopi, M., Krishnan, S., Silva, C.: Surface reconstruction using lower dimensional localized delaunay triangulation. Eurographics 19(3), 467–478 (2000) Google Scholar
  8. 8.
    Gruber, P.M.: Optimum quantization and its applications. Adv. Math. 186, 456–497 (2004) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Heckbert, P.S., Garland, M.: Survey of polygonal surface simplification algorithms. Tech. Rep., Computer Science Department, Carnegie Mellon University (1997) Google Scholar
  10. 10.
    Hoppe, H.: Progressive meshes. In: SIGGRAPH, pp. 99–108. ACM, New York (1996) Google Scholar
  11. 11.
    Isenburg, M., Lindstrom, P.: Streaming meshes. In: Proceedings IEEE Visualization, pp. 231–238 (2005) Google Scholar
  12. 12.
    Luebke, D.P.: A developer’s survey of polygonal simplification algorithms. IEEE Comput. Graph. Appl. 21(3), 24–35 (2001) CrossRefGoogle Scholar
  13. 13.
    Nadler, E.: Piecewise-linear best l 2 approximation on triangulations. In: Chui, C.K., Schumaker, L.L., Ward, J.D. (eds.) Approximation Theory, pp. 499–502. Academic Press, San Diego (1986) Google Scholar
  14. 14.
    O’Neill, B.: Elementary Differential Geometry, 2nd edn. Academic Press, San Diego (1997). MATHGoogle Scholar
  15. 15.
    Pajarola, R.: Stream-processing points. In: Proceedings IEEE Visualization, pp. 239–246 (2005) Google Scholar
  16. 16.
    Pottmann, H., Krasauskas, R., Hamann, B., Joy, K., Seibold, W.: On piecewise linear approximation of quadratic functions. J. Geom. Graph. 4(1), 31–53 (2000) MATHMathSciNetGoogle Scholar
  17. 17.
    Sheffer, A.: Model simplification for meshing using face clustering. Comput. Aided Des. 33, 925–934 (2001) CrossRefGoogle Scholar
  18. 18.
    Vetterli, M., Marziliano, P., Blu, T.: Sampling signals with finite rate of innovation. IEEE Trans. Signal Proc. 50(6), 1417–1428 (2002). doi:10.1109/TSP.2002.1003065 CrossRefMathSciNetGoogle Scholar
  19. 19.
    Weiler, K.: Edge-based data structures for solid modeling in curved-surface environments. IEEE Comput. Graph. Appl. 5(1), 21–40 (1985) CrossRefGoogle Scholar
  20. 20.
    Yamauchi, H., Gumhold, S., Zayer, R., Seidel, H.P.: Mesh segmentation driven by Gaussian curvature. Vis. Comput. 21(8–10), 649–658 (2005) Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Pablo Diaz-Gutierrez
    • 1
  • Jonas Bösch
    • 2
  • Renato Pajarola
    • 2
  • M. Gopi
    • 1
  1. 1.University of California, IrvineIrvineUSA
  2. 2.Department of InformaticsUniversity of ZürichZürichSwitzerland

Personalised recommendations