The Visual Computer

, Volume 25, Issue 5–7, pp 451–459 | Cite as

An information theoretic approach to camera control for crowded scenes

Original Article

Abstract

Navigation and monitoring of large and crowded virtual environments is a challenging task and requires intuitive camera control techniques to assist users. In this paper, we present a novel automatic camera control technique providing a scene analysis framework based on information theory. The developed framework contains a probabilistic model of the scene to build entropy and expectancy maps. These maps are utilized to find interest points which represent either characteristic behaviors of the crowd or novel events occurring in the scene. After an interest point is chosen, the camera is updated accordingly to display this point. We tested our model in a crowd simulation environment and it performed successfully. Our method can be integrated into existent camera control modules in computer games, crowd simulations and movie pre-visualization applications.

Keywords

Automatic camera control Information Theory Crowds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Christie, M., Olivier, P.: Camera control in computer graphics. In: Eurographics 2006 State of The Art Report (2006) Google Scholar
  2. 2.
    Blinn, J.: Where am I? What am I looking at? IEEE Comput. Graph. Appl. 8(4), 76–81 (1988) CrossRefGoogle Scholar
  3. 3.
    Gleicher, M., Witkin, A.: Through-the-lens camera control. In: Computer Graphics (Proc. SIGGRAPH ’92), vol. 26 (1992). Proc. Siggraph ’92 Google Scholar
  4. 4.
    He, L.W., Cohen, M.F., Salesin, D.H.: The virtual cinematographer: a paradigm for automatic real-time camera control and directing. In: SIGGRAPH ’96: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 217–224. ACM, New York (1996) CrossRefGoogle Scholar
  5. 5.
    Kamada, T., Kawai, S.: A simple method for computing general position in displaying three-dimensional objects. Comput. Vis. Graph. Image Process. 41(1), 43–56 (1988) CrossRefGoogle Scholar
  6. 6.
    Arbel, T., Ferrie, F.P.: Viewpoint selection by navigation through entropy maps. Comput. Vis. IEEE Int. Conf. 1, 248 (1999) Google Scholar
  7. 7.
    Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh saliency. In: SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, pp. 659–666. ACM, New York (2005) CrossRefGoogle Scholar
  8. 8.
    Vázquez, P.P., Feixas, M., Sbert, M., Heidrich, W.: Viewpoint selection using viewpoint entropy. In: VMV ’01: Proceedings of the Vision Modeling and Visualization Conference 2001, pp. 273–280. Aka, Germany (2001) Google Scholar
  9. 9.
    Ji, G., Shen, H.W.: Dynamic view selection for time-varying volumes. IEEE Trans. Vis. Comput. Graph. 12(5), 1109–1116 (2006) CrossRefGoogle Scholar
  10. 10.
    Kwon, J.-Y., Lee, I.-K.: Determination of camera parameters for character motions using motion area. Vis. Comput. 24(7–9), 475–483 (2008) CrossRefGoogle Scholar
  11. 11.
    Stoev, S.L., Straßer, W.: A case study on automatic camera placement and motion for visualizing historical data. In: VIS ’02: Proceedings of the Conference on Visualization ’02, IEEE Computer Society, Washington (2002) Google Scholar
  12. 12.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 623–656 (1948) MathSciNetGoogle Scholar
  13. 13.
    Kullback, S.: Information Theory and Statistics. Dover Books on Mathematics. Dover, New York (1997) MATHGoogle Scholar
  14. 14.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991) MATHCrossRefGoogle Scholar
  15. 15.
    Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. Int. J. Comput. Vis. 37(2), 151–172 (2000) MATHCrossRefGoogle Scholar
  16. 16.
    Wolfe, J.: Visual search. In: Pashler, H.E. (ed.) Attention, Chap. 1, pp. 13–69. University College London Press, London (1998) Google Scholar
  17. 17.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998) CrossRefGoogle Scholar
  18. 18.
    Singh, S., Markou, M.: An approach to novelty detection applied to the classification of image regions. IEEE Trans. Knowl. Data Eng. 16(4), 396–407 (2004) CrossRefGoogle Scholar
  19. 19.
    Itti, L., Baldi, P.: A principled approach to detecting surprising events in video. In: CVPR ’05: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 631–637. IEEE Computer Society, Washington (2005) Google Scholar
  20. 20.
    Shoemake, K.: Animating rotation with quaternion curves. SIGGRAPH Comput. Graph. 19(3), 245–254 (1985) CrossRefGoogle Scholar
  21. 21.
    Reynolds, C.: Opensteer, steering behaviors for autonomous characters (2004). http://opensteer.sourceforge.net/. Last Visited: 2008-11-01

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Computer Graphics LaboratorySabanci UniversityIstanbulTurkey

Personalised recommendations