The Visual Computer

, 25:509 | Cite as

Motion constraint

  • Daniel RaunhardtEmail author
  • Ronan Boulic
Original Article


In this paper, we propose a hybrid postural control approach taking advantage of data-driven and goal-oriented methods while overcoming their limitations. In particular, we take advantage of the latent space characterizing a given motion database. We introduce a motion constraint operating in the latent space to benefit from its much smaller dimension compared to the joint space. This allows its transparent integration into a Prioritized Inverse Kinematics framework. If its priority is high the constraint may restrict the solution to lie within the motion database space. We are more interested in the alternate case of an intermediate priority level that channels the postural control through a spatiotemporal pattern representative of the motion database while achieving a broader range of goals. We illustrate this concept with a sparse database of large range full-body reach motions.


Inverse kinematics Motion editing Posture control 


  1. 1.
    Alexa, M., Mueller, W.: Representing animations by principal components. Comput. Graph. Forum 19, 3 (2000) CrossRefGoogle Scholar
  2. 2.
    Arikan, O., Forsyth, D.A., O’Brien, J.F.: Motion synthesis from annotations. CM Trans. Graph. 22(3), 402–408 (2003) CrossRefGoogle Scholar
  3. 3.
    Aydin, A., Nakajima, M.: Database guided computer animation of human grasping using forward and inverse kinematics. Comput. Graph. 23, 145–154 (1999) CrossRefGoogle Scholar
  4. 4.
    Baerlocher, P., Boulic, R.: An inverse kinematics architecture enforcing an arbitrary number of strict priority levels. Vis. Comput. 20(6), 402–417 (2004) CrossRefGoogle Scholar
  5. 5.
    Berthoz, A.: The Brain’s Sense of Movement. Perspectives in Cognitive Neuroscience. Harvard University Press, Cambridge (2002) Google Scholar
  6. 6.
    Carvalho, S.R., Boulic, R., Thalmann, D.: Interactive low-dimensional human motion synthesis by combining motion models and PIK. Comput. Animat. Virtual Worlds 18(4–5), 493–503 (2007) CrossRefGoogle Scholar
  7. 7.
    Egges, A., Molet, T., Magnenat-Thalmann, N.: Personalised real-time idle motion synthesis. In: Pacific Graphics, Seoul, Korea, pp. 121–130 (2004) Google Scholar
  8. 8.
    Glardon, P., Boulic, R., Thalmann, D.: Robust on-line adaptive footplant detection and enforcement for locomotion. Vis. Comput. 22(3), 194–209 (2006) CrossRefGoogle Scholar
  9. 9.
    Gleicher, M.: Retargetting motion to new characters. In: SIGGRAPH ’98: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 33–42. ACM, New York (1998) CrossRefGoogle Scholar
  10. 10.
    Grochow, K., Martin, S.L., Hertzmann, A., Popovic, Z.: Style-based inverse kinematics. In: SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pp. 522–531. ACM, New York (2004) CrossRefGoogle Scholar
  11. 11.
    Grassia, F.S.: Practical parameterization of rotations using the exponential map. J. Graph. Tools 3(3), 29–48 (1998) Google Scholar
  12. 12.
    Grassia, F.S.: Believable automatically synthesized motion by knowledge-enhanced motion transformation, PhD Thesis, Pittsburgh, PA, USA (2003) Google Scholar
  13. 13.
    Howe, N.R., Levention, M.E., Freeman, W.T.: Bayesian reconstruction of 3d human motion from single-camera vide. In: Advances in Neural Information Processing Systems 12, pp. 820–826. MIT Press, Cambridge (2000) Google Scholar
  14. 14.
    Jolliffe, I.T.: Principal Component Analysis. Springer, Berlin (1986) Google Scholar
  15. 15.
    Korein, J.U.: A Geometric Investigation of Reach. MIT Press, Cambridge (1985) zbMATHGoogle Scholar
  16. 16.
    Kovar, L., Gleicher, M.: Automated extraction and parameterization of motions in large data sets. ACM Trans. Graph. 23(3), 559–568 (2004) CrossRefGoogle Scholar
  17. 17.
    Kulpa, R., Multon, F., Arnaldi, B.: Morphology-independent representation of motion for interactive human-like animation. Comput. Graph. Forum 24, 343–352 (2005) CrossRefGoogle Scholar
  18. 18.
    Lee, J., Chai, J., Reitsma, P., Hodgins, J.K., Pollard, N.: Interactive control of avatars animated with human motion data. ACM Trans. Graph. 21(3), 491–500 (2002) Google Scholar
  19. 19.
    Mukai, T., Kuriyama, S.: Geostatistical motion interpolation. ACM Trans. Graph. 24(3), 1062–1070 (2005) CrossRefGoogle Scholar
  20. 20.
    Nakamura, Y., Hanafusa, H., Yoshikawa, T.: Inverse kinematic solutions with singularity robustness for robot manipulator control. J. Dyn. Syst. Meas. Control 108, 163–171 (1986) zbMATHCrossRefGoogle Scholar
  21. 21.
    Park, W., Chaffin, D.B., Martin, B.J.: Toward memory-based human motion simulation: development and validation of a motion modification algorithm. IEEE Trans. Syst. Man Cybern., Part A 34(3), 376–386 (2004) CrossRefGoogle Scholar
  22. 22.
    Popovic, Z., Witkin, A.: Physically based motion transformation. In: SIGGRAPH ’99: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 11–20. ACM, New York (1999) CrossRefGoogle Scholar
  23. 23.
    Rose, C.F., III, Sloan, P.-P.J., Cohen, M.F.: Artist-directed inverse-kinematics using radial basis function interpolation. Comput. Graph. Forum 20, 3 (2001) CrossRefGoogle Scholar
  24. 24.
    Safanova, A., Hodgins, J.K., Pollard, N.S.: Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Trans. Graph. 23(3), 514–521 (2004) CrossRefGoogle Scholar
  25. 25.
    Shin, H.J., Lee, J.: Motion synthesis and editing in low-dimensional spaces, Research articles. Comput. Animat. Virtual Worlds 17(3–4), 219–227 (2006) CrossRefGoogle Scholar
  26. 26.
    Wang, X.: Three-dimensional kinematic analysis of influence of hand orientation and joint limits on the control of arm posture and movement. Biol. Cybern. 80(6), 449–463 (1999) CrossRefGoogle Scholar
  27. 27.
    Wang, X.: Behavior-based inverse kinematics algorithm to predict arm prehension postures for computer-aided ergonomic evaluation. J. Biomech. 32(5), 453–460 (1999) CrossRefGoogle Scholar
  28. 28.
    Weisstein, E.W.: Barycentric Coordinates, Mathworld—A Wolfram Web Resource Google Scholar
  29. 29.
    Yamane, K., Kuffner, J.J., Hodgins, J.K.: Synthesizing animations of human manipulation tasks. ACM Trans. Graph. 23(3), 532–539 (2004) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Ecole Polytechnique Fédérale de Lousanne, VRLAB Station 14LausanneSwitzerland

Personalised recommendations