The Visual Computer

, Volume 25, Issue 5–7, pp 441–449 | Cite as

Automatic view selection through depth-based view stability analysis

Original Article

Abstract

Although the real world is composed of three-dimensional objects, we communicate information using two-dimensional media. The initial 2D view we see of an object has great importance on how we perceive it. Deciding which of the all possible 2D representations of 3D objects communicates the maximum information to the user is still challenging, and it may be highly dependent on the addressed task. Psychophysical experiments have shown that three-quarter views (oblique views between frontal view and profile view) are often preferred as representative views for 3D objects; however, for most models, no knowledge of its proper orientation is provided. Our goal is the selection of informative views without any user intervention. In order to do so, we analyze some stability-based view descriptors and present a new one that computes view stability through the use of depth maps, without prior knowledge on the geometry or orientation of the object. We will show that it produces good views that, in most of the analyzed cases, are close to three-quarter views.

Keywords

Best view Automatic view selection View stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andujar, C., Boo, J., Brunet, P., Gonzalez, M.F., Navazo, I., Vazquez, P.P., Vinacua, A.: Omnidirectional relief impostors. Comput. Graph. Forum 26(3), 553–560 (2007) CrossRefGoogle Scholar
  2. 2.
    Bennett, C., Gacs, P., Li, M., Vitanyi, P., Zurek, W.: Information distance. IEEE Trans. Inf. Theory 44, 1407–1423 (1998) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Blanz, V., Tarr, M., Bülthoff, H.: What object attributes determine canonical views? Perception 28, 575–599 (1999) CrossRefGoogle Scholar
  4. 4.
    Bordoloi, U., Shen, H.W.: View selection for volume rendering. In: IEEE Visualization, pp. 487–494 (2005) Google Scholar
  5. 5.
    Cebrián, M., Alfonseca, M., Ortega, A.: The normalized compression distance is resistant to noise. IEEE Trans. Inf. Theory 53(5), 1895–1900 (2007) CrossRefGoogle Scholar
  6. 6.
    Cilibrasi, R., Vitanyi, P.: Clustering by compression. IEEE Trans. Inf. Theory 51(4), 1523–1545 (2005) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Cleju, I., Saupe, D.: Evaluation of supra-threshold perceptual metrics for 3d models. In: Proc. 3rd Symposium on Applied Perception in Graphics and Visualization, pp. 41–44. ACM, New York (2006) CrossRefGoogle Scholar
  8. 8.
    Cyr, C.M., Kimia, B.B.: A similarity-based aspect-graph approach to 3d object recognition. Int. J. Comput. Vis. 57(1), 5–22 (2004) CrossRefGoogle Scholar
  9. 9.
    Freeman, W.T.: Exploiting the generic view assumption to estimate scene parameters. In: Proc. 4th Intl. Conference on Computer Vision, pp. 347–356. IEEE, Berlin (1993) Google Scholar
  10. 10.
    Freeman, W.T.: Exploiting the generic viewpoint assumption. Int. J. Comput. Vis. 20(3), 243–261 (1996) CrossRefGoogle Scholar
  11. 11.
    Fu, H., Cohen-Or, D., Dror, G., Sheffer, A.: Upright orientation of man-made objects. ACM Trans. Graph. 27(3), 1–7 (2008) CrossRefGoogle Scholar
  12. 12.
    Ikeuchi, K., Kanade, T.: Automatic generation of object recognition programs. Proc. IEEE 76(8), 1016–1035 (1988) CrossRefGoogle Scholar
  13. 13.
    Ji, G., Shen, H.W.: Dynamic view selection for time-varying volumes. IEEE Trans. Vis. Comput. Graph. 12(5), 1109–1116 (2006) CrossRefGoogle Scholar
  14. 14.
    Koenderink, J.J., Doorn, A.J.V.: Photometric invariants related to solid shape. Opt. Acta 27(7), 981–996 (1980) Google Scholar
  15. 15.
    Li, M., Vitanyi, P.M.: An Introduction to Kolmogorov Complexity and Its Applications. Springer, Berlin (1993) MATHGoogle Scholar
  16. 16.
    Li, M., Chen, X., Li, X., Ma, B., Vitanyi, P.: The similarity metric. IEEE Trans. Inf. Theory 50(12), 3250–3264 (2004) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Mühler, K., Neugebauer, M., Tietjen, C., Preim, B.: Viewpoint selection for intervention planning. In: EG/IEEE-VGTC Symposium on Visualization, pp. 267–274 (2007) Google Scholar
  18. 18.
    Palmer, S., Rosch, E., Chase, P.: Canonical perspective and the perception of objects. In: Attention and Performance IX, pp. 135–151 (1981) Google Scholar
  19. 19.
    Plantinga, H., Dyer, C.R.: Visibility, occlusion, and the aspect graph. Int. J. Comput. Vis. 5, 137–160 (1990) CrossRefGoogle Scholar
  20. 20.
    Plemenos, D., Benayada, M.: Intelligent display in scene modeling. New techniques to automatically compute good views. In: International Conference GRAPHICON’96 Google Scholar
  21. 21.
    Polonsky, O., Patanè, G., Biasotti, S., Gotsman, C., Spagnuolo, M.: What’s in an image? Vis. Comput. 21(8–10), 840–847 (2005) CrossRefGoogle Scholar
  22. 22.
    Roberts, D., Marshall, A.: Viewpoint selection for complete surface coverage of three-dimensional objects. In: Proc. of the British Machine Vision Conference (1998) Google Scholar
  23. 23.
    Sbert, M., Plemenos, D., Feixas, M., Gonzalez, F.: Viewpoint quality: Measures and applications. In: Neumann, L., Sbert, M., Gooch, B., Purgathofer, W. (eds.) Computational Aesthetics in Graphics, Visualization and Imaging (2005) Google Scholar
  24. 24.
    Takahashi, S., Fujishiro, I., Takeshima, Y., Nishita, T.: A feature-driven approach to locating optimal viewpoints for volume visualization. In: IEEE Visualization, pp. 495–502 (2005) Google Scholar
  25. 25.
    Tarr, M., Kriegman, D.: What defines a view? Vis. Res. 41(15), 1981–2004 (2001) CrossRefGoogle Scholar
  26. 26.
    Todd, J.T.: The visual perception of 3d shape. TRENDS Cogn. Sci. 8(3), 115–121 (2004) CrossRefGoogle Scholar
  27. 27.
    Vázquez, P.P., Feixas, M., Sbert, M., Heidrich, W.: Automatic view selection using viewpoint entropy and its application to image-based modeling. Comput. Graph. Forum 22(4), 689–700 (2003) CrossRefGoogle Scholar
  28. 28.
    Vázquez, P.P., Monclús, E., Navazo, I.: Representative views and paths for volume models. In: Smart Graphics, pp. 106–117 (2008) Google Scholar
  29. 29.
    Viola, I., Feixas, M., Sbert, M., Gröller, M.E.: Importance-driven focus of attention. IEEE Trans. Vis. Comput. Graph. 12(5), 933–940 (2006) CrossRefGoogle Scholar
  30. 30.
    Weinshall, D., Werman, M.: A computational theory of canonical views. In: Proc. APRA IU Workshop (1996) Google Scholar
  31. 31.
    Weinshall, D., Werman, M.: On view likelihood and stability. IEEE Trans. Pattern Anal. Mach. Intell. 19(2), 97–108 (1997) CrossRefGoogle Scholar
  32. 32.
    Yuille, A.L., Coughlan, J.M., Konishi, S.: The generic viewpoint constraint resolves the generalized bas relief ambiguity. In: Conference on Information Sciences and Systems. Princeton University Press, Princeton (2000) Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Departament de Llenguatges i Sistemes Informàtics (LSI)Universitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations