Skip to main content
Log in

Enhancing 3D mesh topological skeletons with discrete contour constrictions

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper describes a unified and fully automatic algorithm for Reeb graph construction and simplification as well as constriction approximation on triangulated surfaces.

The key idea of the algorithm is that discrete contours – curves carried by the edges of the mesh and approximating the continuous contours of a mapping function – encode both topological and geometrical shape characteristics. Therefore, a new concise shape representation, enhanced topological skeletons, is proposed, encoding the contours’ topological and geometrical evolution.

First, mesh feature points are computed. Then they are used as geodesic origins for the computation of an invariant mapping function that reveals the shape most significant features. Next, for each vertex in the mesh, its discrete contour is computed. As the set of discrete contours recovers the whole surface, each of them can be analyzed, both to detect topological changes and constrictions. Constriction approximations enable Reeb graphs refinement into more visually meaningful skeletons, which we refer to as enhanced topological skeletons.

Extensive experiments showed that, without any preprocessing stage, proposed algorithms are fast in practice, affine-invariant and robust to a variety of surface degradations (surface noise, mesh sampling and model pose variations). These properties make enhanced topological skeletons interesting shape abstractions for many computer graphics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attene, M., Biasotti, S., Spagnuolo, M.: Shape understanding by contour-driven retiling. Vis. Comput. 19, 127–138 (2003)

    MATH  Google Scholar 

  2. Attene, M., Katz, S., Mortara, M., Patané, G., Spagnuolo, M., Tal, A.: Mesh segmentation: A comparative study. In: Shape Modeling International, pp. 14–25. IEEE Computer Society, Matsushima, Japan (2006)

    Google Scholar 

  3. Berreti, S., Del Bimbo, A., Pala, P.: Partitioning of 3D meshes using Reeb graphs. In: IEEE ICPR, pp. 19–22. IEEE Computer Society, Hong Kong (2006)

    Google Scholar 

  4. Biasotti, S., Marini, S., Mortara, M., Patanè, G.: An overview on properties and efficacy of topological skeletons in shape modelling. In: Shape Modeling International, pp. 245–254. IEEE Computer Society, Seoul, Korea (2003)

    Chapter  Google Scholar 

  5. Biederman, I.: Recognition-by-components: A theory of human image understanding. Psychol. Rev. 94, 115–147 (1987)

    Article  Google Scholar 

  6. Blum, H., Nagel, R.N.: Shape description using weighted symmetric axis features. Pattern Recognit. 10, 167–180 (1978)

    Article  MATH  Google Scholar 

  7. Bremer, P.T., Edelsbrunner, H., Hamann, B., Pascucci, V.: Topological hierarchy for functions on triangulated surfaces. IEEE Trans. Vis. Comput. Graph. 10, 385–396 (2004)

    Article  Google Scholar 

  8. Capell, S., Green Seth abd Curless, B., Duchamp, T., Popović, Z.: Interactive skeleton-driven dynamic deformations. ACM Trans. Graph. 21, 586–593 (2002)

    Article  Google Scholar 

  9. Carr, H., Snoeyink, J., de Panne, M.V.: Simplifying flexible isosurfaces using local geometric measures. In: IEEE Visualization, pp. 497–504. IEEE Computer Society, Minneapolis, USA (2004)

    Chapter  Google Scholar 

  10. Cole-McLaughlin, K., Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Loops in Reeb graphs of 2-manifolds. In: Symposium on Computational Geometry, pp. 344–350. ACM, San Diego, USA (2003)

    Google Scholar 

  11. Edelsbrunner, H., Mücke, E.P.: Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms. ACM Trans. Graph. 9, 66–104 (1990)

    Article  MATH  Google Scholar 

  12. Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., Dobkin, D.: Modeling by example. ACM Trans. Graph. 23, 652–663 (2004)

    Article  Google Scholar 

  13. Gamma Research Group Repository: INRIA. http://www-c.inria.fr/gamma/disclaimer.php (2006). Accessed 2006

  14. Hétroy, F.: Constriction computation using surface curvature. In: Eurographics, pp. 1–4. Eurographics Association, Dublin, Ireland (2005)

    Google Scholar 

  15. Hétroy, F., Attali, D.: From a closed piecewise geodesic to a constriction on a closed triangulated surface. In: Pacific Graphics, pp. 394–398. IEEE Computer Society, Canmore, Canada (2003)

    Google Scholar 

  16. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.: Topology matching for fully automatic similarity estimation of 3D shapes. In: SIGGRAPH, pp. 203–212. ACM Press, Los Angeles, USA (2001)

    Chapter  Google Scholar 

  17. Katz, S., Leifman, G., Tal, A.: Mesh segmentation using feature point and core extraction. Vis. Comput. 21, 865–875 (2005)

    Article  Google Scholar 

  18. Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. Graph. 22, 954–961 (2003)

    Article  Google Scholar 

  19. Koenderink, J.J., van Doorn, A.J.: Surface shape and curvature scales. Image Vision Comput. 10, 557–565 (1992)

    Article  Google Scholar 

  20. Lazarus, F., Verroust, A.: Level set diagrams of polyhedral objects. Tech. Rep. 3546, Institut National de Recherche en Informatique et en Automatique (INRIA) (1999)

  21. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Visualization and Mathematics, pp. 33–57. Springer, Berlin, Germany (2002)

    Google Scholar 

  22. Morse, M.: Relations between the critical points of a real function of n independant variables. Trans. Am. Math. Soc. 27, 345–396 (1925)

    Article  MathSciNet  Google Scholar 

  23. Mortara, M., Patanè, G.: Affine-invariant skeleton of 3D shapes. In: Shape Modeling International, pp. 245–252. IEEE Computer Society, Banff, Canada (2002)

    Chapter  Google Scholar 

  24. Ni, X., Garland, M., Hart, J.: Fair Morse functions for extracting the topological structure of a surface mesh. ACM Trans. Graph. 23, 613–622 (2004)

    Article  Google Scholar 

  25. Nieda, T., Pasko, A., Kunii, T.L.: Detection and classification of topological evolution for linear metamorphosis. Vis. Comput. 22, 346–356 (2006)

    Article  Google Scholar 

  26. Ogniewicz, R., Ilg, M.: Voronoi skeletons: Theory and applications. In: IEEE Computer Vision and Pattern Recognition, pp. 63–69. IEEE Computer Society, Champaign, USA (1992)

    Chapter  Google Scholar 

  27. Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., Funkhouser, T.: A planar-reflective symmetry transform for 3D shapes. ACM Trans. Graph. 25, 549–559 (2006)

    Article  Google Scholar 

  28. Reeb, G.: Sur les points singuliers d’une forme de Pfaff complètement intégrable ou d’une fonction numérique. C.R. Acad. Sci. 222, 847–849 (1946)

    MATH  MathSciNet  Google Scholar 

  29. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton shape benchmark. In: Shape Modeling International, pp. 167–178. IEEE Computer Society, Genova, Italy (2004)

    Chapter  Google Scholar 

  30. Shinagawa, Y., Kunii, T.L., Kergosien, Y.L.: Surface coding based on Morse theory. IEEE Comput. Graph. Appl. 11, 66–78 (1991)

    Article  Google Scholar 

  31. Takahashi, S., Ikeda, T., Shinagawa, Y., Kunii, T.L., Ueda, M.: Algorithms for extracting correct critical points and constructing topological graphs from discrete geographical elevation data. Comput. Graph. Forum 14, 181–192 (1995)

    Article  Google Scholar 

  32. Tierny, J., Vandeborre, J.P., Daoudi, M.: 3D mesh skeleton extraction using topological and geometrical analyses. In: Pacific Graphics, pp. 85–94. IEEE Computer Society, Taipei, Taiwan (2006)

    Google Scholar 

  33. Wu, F.C., Ma, W.C., Liang, R.H., Chen, B.Y., Ouhyoung, M.: Domain connected graph: the skeleton of a closed 3D shape for animation. Vis. Comput. 22, 117–135 (2006)

    Article  Google Scholar 

  34. Yamauchi, H., Gumhold, S., Zayer, R., Seidel, H.P.: Mesh segmentation driven by Gaussian curvature. Vis. Comput. 21, 649–658 (2005)

    Article  Google Scholar 

  35. Zhang, E., Mischaikow, K., Turk, G.: Feature-based surface parametrization and texture mapping. ACM Trans. Graph. 24, 1–27 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Tierny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tierny, J., Vandeborre, JP. & Daoudi, M. Enhancing 3D mesh topological skeletons with discrete contour constrictions. Visual Comput 24, 155–172 (2008). https://doi.org/10.1007/s00371-007-0181-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-007-0181-0

Keywords

Navigation