Skip to main content
Log in

A robust hole-filling algorithm for triangular mesh

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents a novel hole-filling algorithm that can fill arbitrary holes in triangular mesh models. First, the advancing front mesh technique is used to cover the hole with newly created triangles. Next, the desirable normals of the new triangles are approximated using our desirable normal computing schemes. Finally, the three coordinates of every new vertex are re-positioned by solving the Poisson equation based on the desirable normals and the boundary vertices of the hole. Many experimental results and error evaluations are given to show the robustness and efficiency of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Carr, J., Beatson, R., Cherrie, J., Mitchell, T., Fright, W., McCallum, B.: Reconstruction and representation of 3D objects with radial basis functions. In: Processing of SIGGRAPH, Los Angeles, CA, 12–17 August 2001, pp. 67–76. ACM Press, New York (2001)

    Google Scholar 

  2. Chen, C.Y., Cheng, K.Y., Liao, H.Y.M.: A sharpness dependent approach to 3D polygon mesh hole filling. In: Proceedings of Eurographic, Trinity College, Dublin, Ireland, 29 August–2 September 2005, pp. 13–16. Blackwell Press (2005)

  3. Chen, C.Y., Cheng, K.Y.: A sharpness dependent filter for mesh smoothing. Comput. Aided Geom. Des. 22(5), 376–391 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen, C.Y., Cheng, K.Y., Liao, H.Y.M.: Fairing of polygon meshes via Bayesian discriminate analysis. The 12th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, Plzen-Bory, Czech Republic, pp. 175–182. UNION Agency-Science Press (2004)

  5. Chui, C., Lai, M.-J.: Filling polygonal holes using C 1 cubic triangular spline patches. Comput. Aided Geom. Des. 17(3), 297–307 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Curless, B., Levoy, M.: A volumetric method for building complex model from range image. In: Processing of SIGGRAPH, New Orleans, USA, 4–9 August 1996, pp. 303–312. ACM Press, New York (1996)

    Google Scholar 

  7. Davis, J., Marschner, S.R., Garr, M., Levoy, M.: Filling holes in complex surface using volumetric diffusion. In: Processing of 3D Data Processing Visualization and Transmission, Padova, Italy, 19–21 June 2002, pp. 428–433. IEEE Computer Society Press, New York (2002)

    Chapter  Google Scholar 

  8. Dey, T.K.: Delaunay triangulation in three dimensions with finite precision arithmetic. Comput. Aided Geom. Des. 9(6), 457–470 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Eck, M., DeRose, T.D., Kuchamp, T., Hoope, H., Lounsbery, M., Stuetzle, W.: Multi-resolution analysis of arbitrary meshes. In: Processing of SIGGRAPH, Los Angeles, CA, USA, 6–11 August 1995, pp. 173–182. ACM Press, New York (1995)

    Google Scholar 

  10. George, L.P., Seveno, E.: The advancing-front mesh generation method revisited. Int. J. Numer. Methods Eng. 37(7), 3605–3619 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Girod, B., Greiner, G., Niemann, H.: Principles of 3D Image Analysis and Synthesis. Kluwer, Boston (2000)

    MATH  Google Scholar 

  12. Ju, T.: Robust repair of polygonal models. In: Processing of SIGGRAPH, Los Angeles, CA, USA, 8–12 August 2004, pp. 888–895. ACM Press, New York (2004)

    Google Scholar 

  13. Jun, Y.: A piecewise hole-filling algorithm in reverse engineering. Comput. Aided Des. 22(8), 263–270 (2005)

    Google Scholar 

  14. Joshua, P., Szymon, R.: Atomic volumes for mesh completion. In: Proceedings Eurographics Symposium on Geometry Processing, Dublin, Ireland. 29 August–2 September 2005, pp. 33–41. Blackwell Press (2005)

  15. Liepa, P.: Filling hole in meshes. In: Proceedings Eurographics Symposium on Geometric Processing, Granada, Spain, 1–6 September 2003, pp. 200–207. Blackwell Press (2003)

  16. Levin, A.: Filling a N-sided hole using combined subdivision scheme. http://www.math.tau.ac.il/∼levin/adi/pdf/nsided.pdf. Cited 1999

  17. O’Rourke, J.: Computational Geometry in C. Cambridge University Press, New York (1999)

    Google Scholar 

  18. Perez, P., Gangnet, P., Blake, A.: Poisson image editing. In: Processing of SIGGRAPH, San Diego, California, USA, 27–31 July 2003, pp. 313–318. ACM Press, New York (2003)

    Google Scholar 

  19. Pfeifle, R., Seidel, H.P.: Triangular B-Spline for blending and filling of polygonal holes. In: Processing of Graphics Interface, Halifax, Nova Scotia, Canada, 22–24 May 1996, pp. 186–193. ACM Press (1996)

  20. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Comput. Aided Des. 25(4), 225–232 (1993)

    Article  Google Scholar 

  21. Surazhsky, V., Surazhsky, T., Kirsanov, D., Gorter, S.J., Hoope, H.: Fast exact and approximate geodesics on meshes. In: Processing of SIGGRAPH, Los Angeles, California, USA, 31 July–4 August 2005, pp. 553–560. ACM Press, New York (2005)

    Google Scholar 

  22. Yu, Y., Zhou, K., Shi, X., Bao, H. Guo, B., Shum, H.: Mesh editing with Poisson-based gradient field manipulation. In: Processing of SIGGRAPH, Los Angeles, California, USA, 8–12 August 2004, pp. 644–651. ACM Press, New York (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuming Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, W., Gao, S. & Lin, H. A robust hole-filling algorithm for triangular mesh. Visual Comput 23, 987–997 (2007). https://doi.org/10.1007/s00371-007-0167-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-007-0167-y

Keywords

Navigation