Skip to main content
Log in

A topological approach for surface reconstruction from sample points

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Most algorithms for surface reconstruction from sample points rely on computationally demanding operations to derive the reconstruction. In this paper we introduce an innovative approach for generating 3D piecewise linear approximations from sample points that relies strongly on topological information, thus reducing the computational cost and numerical instabilities typically associated with geometric computations. Discrete Morse theory provides the basis for a topological framework that supports a robust reconstruction algorithm capable of handling multiple components and has low computational cost. We describe the proposed approach and introduce the reconstruction algorithm, called TSR – topological surface reconstructor. Some reconstruction results are presented and the performance of TSR is compared with that of other reconstruction approaches for some standard point sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.: Computing and rendering point set surfaces. IEEE Trans. Vis. Comput. Graph. 9(1), 3–15 (2003)

    Article  Google Scholar 

  2. Amenta, N., Bern, M., Eppstein, D.: The crust and the skeleton: Combinatorial curve reconstruction. Graph. Models Image Processing: GMIP 60(2), 125–135 (1998). (URL citeseer.ist.psu.edu/amenta98crust.html)

  3. Amenta, N., Bern, M.W.: Surface reconstruction by Voronoi filtering. In: Symposium on Computational Geometry, pp. 39–48 (1998)

  4. Amenta, N., Choi, S., Dey, T.K., Leekha, N.: A simple algorithm for homeomorphic surface reconstruction. Int. J. Comput. Geom. Appl. 12(1–2), 125–141 (2002)

    Article  MATH  Google Scholar 

  5. Amenta, N., Choi, S., Dey, T.K., Leekha, N.: A simple algorithm for homeomorphic surface reconstruction. Int. J. Comput. Geom. Appl. 12(1–2), 125–141 (2002). (URL citeseer.nj.nec.com/amenta00simple.html)

    Google Scholar 

  6. Amenta, N., Choi, S., Kolluri, R.K.: The power crust, unions of balls, and the medial axis transform. Comput. Geom. 19(2–3), 127–153 (2001). (URL citeseer.ist.psu.edu/amenta01power.html)

    Google Scholar 

  7. Attali, D.: r-regular shape reconstruction from unorganized points. Comput. Geom. Theory Appl. 10, 239–249 (1998). (Elsevier)

    Google Scholar 

  8. Bajaj, C.L., Bernardini, F., Xu, G.: Automatic reconstruction of surfaces and scalar fields from 3D scans. Comput. Graph. 29(Annual Conference Series), 109–118 (1995). (URL citeseer.ist.psu.edu/bajaj95automatic.html)

  9. Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., Taubin, G.: The ball-pivoting algorithm for surface reconstruction. IEEE Trans. Vis. Comput. Graph. 5(4), 349–359 (1999). (URL citeseer.nj.nec.com/bernardini99ballpivoting.html)

    Google Scholar 

  10. Boissonnat, J.D.: Shape reconstruction from planar cross-sections. Comput. Vis. Image 44, 1–29 (1988)

    Article  Google Scholar 

  11. Boissonnat, J.D., Devillers, O., Pion, S., Teillaud, M., Yvinec, M.: Triangulations in cgal. Comput. Geom. Theory Appl. 22, 5–19 (2002)

    MATH  Google Scholar 

  12. Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3D objects with radial basis functions. In: SIGGRAPH ’01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 67–76. ACM Press, New York (2001). (DOI http://doi.acm.org/10.1145/383259.383266)

  13. Curless, B.M.L.: A volumetric method for building complex models from range images. In: Siggraph, pp. 303–312 (1996)

  14. Dey, T.K., Goswami, S.: Tight cocone: A water-tight surface reconstruction. Tech. Rep. OSU-CISRC-12/02-TR31. The Ohio State University (2002)

  15. Dey, T.K., Goswami, S.: Tight cocone: a water-tight surface reconstructor. In: Proceedings of the Eighth ACM Symposium on Solid Modeling and Applications, pp. 127–134. ACM Press, New York (2003). (DOI http://doi.acm.org/10.1145/781606.781627

  16. Edelsbrunner, H.: Surface Reconstruction by Wrapping Finite Point Set in Space. Rick Pollack e Eli Goodman Festschrift, A. Aronov, S. Basu, J. Pach, M. Sharir, eds. Springer, submitted (2002)

  17. Edelsbrunner, H., Mücke, E.P.: Three-dimensional alpha shapes. ACM Trans. Graph. 13(1), 43–72 (1994)

    Article  MATH  Google Scholar 

  18. Forman, R.: Morse theory for cell complexes. Adv. Math. 134(1), 90–145 (1998)

    Article  MATH  Google Scholar 

  19. Forman, R.: Witten-Morse theory for cell complexes. Topology 37(5), 945–979 (1998)

    Article  MATH  Google Scholar 

  20. Fortune: Voronoi diagrams and delaunay triangulations. In: Computing in Euclidean Geometry, Ding-Zhu Du, Frank Hwang, eds., Lecture Notes Series on Computing, vol. 1. World Scientific, Singapore (1992)

  21. Gois, J.P.: Reconstrução de Superfícies a Partir de Nuvens de Pontos. Master’s thesis, Universidade de São Paulo – Instituto de Ciências Matemáticas e Computação (2004) (in Portuguese)

  22. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. Comput. Graph. 26(2), 71–78 (1992). (URL citeseer.nj.nec.com/article/hoppe94surface.html)

    Google Scholar 

  23. Kolluri, R., Shewchuk, J.R., O’Brien, J.F.: Spectral surface reconstruction from noisy point clouds. In: Siggraph, pp. 11–22 (2004)

  24. Lewiner, T.: Constructing Discrete Morse Functions. Master’s thesis, Department of Mathematics, PUC-Rio (2002). (URL http://wwwsop.inria.fr/geometrica/personnel/Thomas.Lewiner/Thesis.pdf)

  25. Ni, X., Garland, M., Hart, J.C.: Fair Morse functions for extracting the topological structure of a surface mesh. ACM Trans. Graph. 23(3), 613–622 (2004). (DOI http://doi.acm.org/10.1145/1015706.1015769)

    Google Scholar 

  26. Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.P.: Multilevel partition of unity implicits. ACM Trans. Graph. 22(3), 463–470 (2003). (DOI http://doi.acm.org/10.1145/882262.882293)

  27. Schreiner, J., Scheidegger, C.E., Fleishman, S., Silva, C.T.: Direct (re)meshing for efficient surface processing. Comput. Graph. Forum 25(3), 527–536 (2006)

    Article  Google Scholar 

  28. Sharf, A., Lewiner, T., Shamir, A., Kobbelt, L., CohenOr, D.: Competing fronts for coarsetofine surface reconstruction. Comput. Graph. Forum 25(3), 389–398 (2006)

    Article  Google Scholar 

  29. Teichmann, M., Capps, M.: Surface reconstruction with anisotropic density-scaled alpha shapes. In: D. Ebert, H. Hagen, H. Rushmeier (eds.) IEEE Visualization ’98, pp. 67–72 (1998). (URL citeseer.nj.nec.com/article/teichmann98surface.html)

  30. Velho, L., Mederos, B., de Figueiredo, L.H.: Moving least squares multiresolution surface approximation. In: XVI Brazilian Symposium on Computer Graphics and Image Processing, Proceedings of SIBGRAPI 2003. IEEE (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helton Hideraldo Bíscaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bíscaro, H., Filho, A., Nonato, L. et al. A topological approach for surface reconstruction from sample points. Visual Comput 23, 793–801 (2007). https://doi.org/10.1007/s00371-007-0134-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-007-0134-7

Keywords

Navigation