The Visual Computer

, Volume 22, Issue 9–11, pp 682–692 | Cite as

Real-time triple product relighting using spherical local-frame parameterization

  • Wan-Chun Ma
  • Chun-Tse Hsiao
  • Ken-Yi Lee
  • Yung-Yu Chuang
  • Bing-Yu Chen
Special Issue Paper

Abstract

This paper addresses the problem of real-time rendering for objects with complex materials under varying all-frequency illumination and changing view. Our approach extends the triple product algorithm by using local-frame parameterization, spherical wavelets, per-pixel shading and visibility textures. Storing BRDFs with local-frame parameterization allows us to handle complex BRDFs and incorporate bump mapping more easily. In addition, it greatly reduces the data size compared to storing BRDFs with respect to the global frame. The use of spherical wavelets avoids uneven sampling and energy normalization of cubical parameterization. Finally, we use per-pixel shading and visibility textures to remove the need for fine tessellations of meshes and shift most computation from vertex shaders to more powerful pixel shaders. The resulting system can render scenes with realistic shadow effects, complex BRDFs, bump mapping and spatially-varying BRDFs under varying complex illumination and changing view at real-time frame rates on modern graphics hardware.

Keywords

All-frequency relighting Precomputed radiance transfer Local frame Spherical wavelets Real-time rendering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonneau, G.P.: Optimal triangular Haar bases for spherical data. In: IEEE Visualization 1999, pp. 279–284 (1999)Google Scholar
  2. 2.
    Clarberg, P., Jarosz, W., Akenine-Moller, T., Jensen, H.W.: Wavelet importance sampling: Efficiently evaluating products of complex functions. ACM Trans. Graph. 24(3), 1166–1175 (2005)CrossRefGoogle Scholar
  3. 3.
    Green, P., Kautz, J., Matusik, W., Durand, F.: View-dependent precomputed light transport using nonlinear gaussian function approximations. In: Proceedings of I3D 2006, pp. 7–14 (2006)Google Scholar
  4. 4.
    Gu, X., Gortler, S.J., Hoppe, H.: Geometry images. In: Proceedings of SIGGRAPH 2002, pp. 355–361 (2002)Google Scholar
  5. 5.
    Kautz, J., Sloan, P.P., Snyder, J.: Fast, arbitrary brdf shading for low-frequency lighting using spherical harmonics. In: Proceedings of EGWR 2002, pp. 291–296 (2002)Google Scholar
  6. 6.
    Lehtinen, J., Kautz, J.: Matrix radiance transfer. In: Proceedings of I3D 2003, pp. 59–64 (2003)Google Scholar
  7. 7.
    Liu, X., Sloan, P.P., Shum, H.Y., Snyder, J.: All-frequency precomputed radiance transfer for glossy objects. In: Proceedings of the EGSR 2004, pp. 337–344 (2004)Google Scholar
  8. 8.
    Ng, R., Ramamoorthi, R., Hanrahan, P.: All-frequency shadows using non-linear wavelet lighting approximation. ACM Trans. Graph. 22(3), 376–381 (2003)CrossRefGoogle Scholar
  9. 9.
    Ng, R., Ramamoorthi, R., Hanrahan, P.: Triple product wavelet integrals for all-frequency relighting. ACM Trans. Graph. 23(3), 477–487 (2004)CrossRefGoogle Scholar
  10. 10.
    Nielson, G.M., Jung, I.H., Sung, J.: Haar wavelets over triangular domains with applications to multiresolution models for flow over a sphere. In: Proceedings of the 8th conference on Visualization 1997, pp. 143–149 (1997)Google Scholar
  11. 11.
    Ramamoorthi, R., Hanrahan, P.: An efficient representation for irradiance environment maps. In: Proceedings of SIGGRAPH 2001, pp. 497–500 (2001)Google Scholar
  12. 12.
    Schröder, P., Sweldens, W.: Spherical wavelets: efficiently representing functions on the sphere. In: Proceedings of SIGGRAPH 1995, pp. 161–172 (1995)Google Scholar
  13. 13.
    Schröder, P., Sweldens, W.: Spherical wavelets: texture processing. In: Proceedings of EGWR 1995, pp. 252–263 (1995)Google Scholar
  14. 14.
    Sloan, P.P.: Normal mapping for precomputed radiance transfer. In: Proceedings of I3D 2006, pp. 23–26 (2006)Google Scholar
  15. 15.
    Sloan, P.P., Hall, J., Hart, J., Snyder, J.: Clustered principal components for precomputed radiance transfer. ACM Trans. Graph. 22(3), 382–391 (2003)CrossRefGoogle Scholar
  16. 16.
    Sloan, P.P., Kautz, J., Snyder, J.: Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In: Proceedings of SIGGRAPH 2002, pp. 527–536 (2002)Google Scholar
  17. 17.
    Sloan, P.P., Luna, B., Snyder, J.: Local, deformable precomputed radiance transfer. ACM Trans. Graph. 24(3), 1216–1224 (2005)CrossRefGoogle Scholar
  18. 18.
    Tsai, Y.T., Shih, Z.C.: All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation. In: Proceedings of SIGGRAPH 2006 (to appear)Google Scholar
  19. 19.
    Wang, R., Tran, J., Luebke, D.: All-frequency relighting of non-diffuse objects using separable BRDF approximation. In: Proceedings of EGSR 2004, pp. 345–354 (2004)Google Scholar
  20. 20.
    Wang, R., Tran, J., Luebke, D.: All-frequency interactive relighting of translucent objects with single and multiple scattering. ACM Trans. Graph. 24(3), 1202–1207 (2005)CrossRefGoogle Scholar
  21. 21.
    Wang, R., Tran, J., Luebke, D.: All-frequency relighting of glossy objects. ACM Trans. Graph. (to appear)Google Scholar
  22. 22.
    Wang, Z., Leung, C.S., Zhu, Y.S., Wong, T.T.: Data compression with spherical wavelets and wavelets for the image-based relighting. Comput. Vision Image Underst. 96(3), 327–344 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Wan-Chun Ma
    • 1
  • Chun-Tse Hsiao
    • 1
  • Ken-Yi Lee
    • 1
  • Yung-Yu Chuang
    • 1
  • Bing-Yu Chen
    • 1
  1. 1.Communication and Multimedia Laboratory, Department of Computer Science and Information EngineeringNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations