The Visual Computer

, Volume 22, Issue 9–11, pp 702–712 | Cite as

A practical and fast rendering algorithm for dynamic scenes using adaptive shadow fields

  • Naoki TamuraEmail author
  • Henry Johan
  • Bing-Yu Chen
  • Tomoyuki Nishita
Special Issue Paper


Recently, a precomputed shadow fields method was proposed for achieving fast rendering of dynamic scenes under environment illumination and local light sources. This method can render shadows fast by precomputing the occlusion information at many sample points arranged on concentric shells around each object and combining multiple precomputed occlusion information rapidly in the rendering step. However, this method uses the same number of sample points on all shells, and cannot achieve real-time rendering due to the rendering computation rely on CPU rather than graphics hardware. In this paper, we propose an algorithm for decreasing the data size of shadow fields by reducing the amount of sample points without degrading the image quality. We reduce the number of sample points adaptively by considering the differences of the occlusion information between adjacent sample points. Additionally, we also achieve fast rendering under low-frequency illuminations by implementing shadow fields on graphics hardware.


Photo-realistic rendering Real-time rendering Precomputed shadow fields 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawala, M., Ramamoorthi, R., Heirich, A., Moll, L.: Efficient image-based methods for rendering soft shadows. In: Proc. SIGGRAPH 2000, pp. 375–384 (2000)Google Scholar
  2. 2.
    Akenine-Moller, T., Assarsson, U.: Shading and shadows: Approximate soft shadows on arbitrary surfaces using penumbra wedges. In: Proc. 13th Eurographics Workshop on Rendering, pp. 297–306 (2002)Google Scholar
  3. 3.
    Assarsson, U., Akenine-Moller, T.: A geometry-based soft shadow volume algorithm using graphics hardware. ACM Trans. Graph. 22(3), 511–520 (2003)CrossRefGoogle Scholar
  4. 4.
    Crow, F.C.: Shadow algorithms for computer graphics. In: Proc. SIGGRAPH 77, pp. 242–248 (1977)Google Scholar
  5. 5.
    Dobashi, Y., Kaneda, K., Yamashita, H., Nishita, T.: A quick rendering method for outdoor scenes using sky light luminance functions expressed with basis functions. J. Inst. Image Elec. Engin. Jap. 24(3), 196–205 (1995)Google Scholar
  6. 6.
    Heckbert, P.S., Herf, M.: Simulating soft shadows with graphics hardware (1997). Technical report CMU-CS-97-104, Carnegie Mellon University, January 1997Google Scholar
  7. 7.
    Heidrich, W., Brabec, S., Seidel, H.P.: Soft shadow maps for linear lights. In: Proc. 11th Eurographics Workshop on Rendering, pp. 269–280 (2000)Google Scholar
  8. 8.
    James, D.L., Fatahalian, K.: Precomputing interactive dynamic deformable scenes. ACM Trans. Graph. 22(3), 879–887 (2003)CrossRefGoogle Scholar
  9. 9.
    Kautz, J., Lehtinen, J., Aila, T.: Hemispherical rasterization for self-shadowing of dynamic objects. In: Proc. Eurographics Symposium on Rendering 2004, pp. 179–184 (2004)Google Scholar
  10. 10.
    Kautz, J., Sloan, P.P., Snyder, J.: Shading and shadows: Fast, arbitrary BRDF shading for low-frequency lighting using spherical harmonics. In: Proc. 13th Eurographics Workshop on Rendering, pp. 291–296 (2002)Google Scholar
  11. 11.
    Kilgard, M.J. (ed.): nVIDIA OpenGL Extension Specifications. nVIDIA Corporation (2004)Google Scholar
  12. 12.
    Kontkanen, J., Laine, S.: Ambient occlusion fields. In: Proc. Symposium on Interactive 3D Graphics and Games 2005, pp. 41–48 (2005)Google Scholar
  13. 13.
    Laine, S., Aila, T., Assarsson, U., Lehtinen, J., Akenine-Moller, T.: Soft shadow volumes for ray tracing. ACM Trans. Graph. 24(3), 1156–1165 (2005)CrossRefGoogle Scholar
  14. 14.
    Lehtinen, J., Kautz, J.: Matrix radiance transfer. In: Proc. Symposium on Interactive 3D Graphics 2003, pp. 59–64 (2003)Google Scholar
  15. 15.
    Mei, C., Shi, J., Wu, F.: Rendering with spherical radiance transport maps. Comput. Graph. Forum 23(3), 281–290 (2004)CrossRefGoogle Scholar
  16. 16.
    Ng, R., Ramamoorthi, R., Hanrahan, P.: All-frequency shadows using non-linear wavelet lighting approximation. ACM Trans. Graph. 22(3), 376–381 (2003)CrossRefGoogle Scholar
  17. 17.
    Ng, R., Ramamoorthi, R., Hanrahan, P.: Triple product wavelet integrals for all-frequency relighting. ACM Trans. Graph. 23(3), 477–487 (2004)CrossRefGoogle Scholar
  18. 18.
    Nishita, T., Nakamae, E.: Continuous tone representation of three-dimensional objects taking account of shadows and interreflection. In: Proc. SIGGRAPH 85, pp. 23–30 (1985)Google Scholar
  19. 19.
    Nishita, T., Nakamae, E.: Continuous tone representation of three- dimensional objects illuminated by sky light. In: Proc. SIGGRAPH 86, pp. 125–132 (1986)Google Scholar
  20. 20.
    Nishita, T., Okamura, I., Nakamae, E.: Shading models for point and linear sources. ACM Trans. Graph. 4(2), 124–146 (1985)zbMATHCrossRefGoogle Scholar
  21. 21.
    Ramamoorthi, R., Hanrahan, P.: An efficient representation for irradiance environment maps. In: Proc. SIGGRAPH 2001, pp. 497–500 (2001)Google Scholar
  22. 22.
    Sloan, P.P., Hall, J., Hart, J., Snyder, J.: Clustered principal components for precomputed radiance transfer. ACM Trans. Graph. 22(3), 382–391 (2003)CrossRefGoogle Scholar
  23. 23.
    Sloan, P.P., Kautz, J., Snyder, J.: Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In: Proc. SIGGRAPH 2002, pp. 527–536 (2002)Google Scholar
  24. 24.
    Sloan, P.P., Liu, X., Shum, H.Y., Snyder, J.: Bi-scale radiance transfer. ACM Trans. Graph. 22(3), 370–375 (2003)CrossRefGoogle Scholar
  25. 25.
    Soler, C., Sillion, F.X.: Fast calculation of soft shadow textures using convolution. In: Proc. SIGGRAPH 98, pp. 321–332 (1998)Google Scholar
  26. 26.
    Tamura, N., Johan, H., Nishita, T.: Deferred shadowing for real-time rendering of dynamic scenes under environment illumination. Comput. Anim. Virtual World 16, 475–486 (2005)CrossRefGoogle Scholar
  27. 27.
    Williams, L.: Casting curved shadows on curved surfaces. In: Proc. SIGGRAPH 78, pp. 270–274 (1978)Google Scholar
  28. 28.
    Zhou, K., Hu, Y., Lin, S., Guo, B., Shum, H.Y.: Precomputed shadow fields for dynamic scenes. ACM Trans. Graph. 24(3), 1196–1201 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Naoki Tamura
    • 1
    Email author
  • Henry Johan
    • 2
  • Bing-Yu Chen
    • 3
  • Tomoyuki Nishita
    • 1
  1. 1.The University of TokyoTokyoJapan
  2. 2.Nanyang Technological UniversitySingaporeSingapore
  3. 3.National Taiwan UniversityTaipeiTaiwan

Personalised recommendations