Skip to main content

Advertisement

Log in

Interactive multi-scale exploration for volume classification

  • Special Issue Paper
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Filter banks are a class of signal processing techniques that can be used to reveal the local energy of a signal at multiple scales. Utilizing such filtering allows us to consider local texture and other data characteristics, and permits volume classification and visualization that cannot be accomplished easily using conventional, transfer function-based methods. Our filter bank approach increases the dimensionality, and thus, the complexity of the classification task. We have therefore developed an interactive user interface for specifying and visualizing these higher dimensional classifiers, which enables volume data exploration and visualization in a filter-bank space. We demonstrate that this technique is particularly effective for the classification of noisy data, and for classifying regions that are difficult to approach using conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bajaj, C.L., Pascucci, V., Schikore, D.R.: The contour spectrum. In: Proceedings of IEEE Visualization ’97 Conference, pp. 167–173 (1997)

  2. Barlow, N., Stuart, L.J.: Animator: A tool for the animation of parallel coordinates. In: Proceedings of the 8th International Conference on Information Visualisation, pp. 725–730 (2004)

  3. Bovik, A.C., Clark, M., Geisler, W.S.: Multichannel texture analysis using localized spatial filters. IEEE Trans. Pattern Anal. Mach. Intell. 12(1), 55–73 (1990)

    Article  Google Scholar 

  4. Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Communic. 31(4), 532–540 (1983)

    Article  Google Scholar 

  5. Drebin, R., Carpenter, L., Hanrahan, P.: Volume rendering. In: SIGGRAPH ’88 Conference Proceedings, pp. 65–74 (1988)

  6. Dunn, D., Higgins, W.E., Wakeley, J.: Texture segmentation using 2D Gabor elementary functions. IEEE Trans. Pattern Anal. Mach. Intell. 16(2), 130–149 (1994)

    Article  Google Scholar 

  7. Fliege, N.J.: Multirate Digital Signal Processing: Multirate Systems, Filter Banks, Wavelets. John Wiley, New York (1994)

    Google Scholar 

  8. Fua, Y.H., Ward, M.O., Rundensteiner, E.A.: Hierarchical parallel coordinates for exploration of large datasets. In: VIS ’99: Proceedings of the conference on Visualization ’99, pp. 43–50. IEEE Computer Society Press, Los Alamitos, CA (1999)

    Google Scholar 

  9. Fujishiro, I., Azuma, T., Takeshima, Y.: Automating transfer function design for comprehensible volume rendering based on 3D field topology analysis. In: Proceedings of IEEE Visualization ’99 Conference, pp. 467–470 (1999)

  10. Gennady Andrienko, N.A.: Parallel coordinates for exploring properties of subsets. In Proceedings of the 2nd International Conference on Coordinated and Multiple Views in Exploratory Visualization (CMV ’04), pp. 93–104 (2004)

  11. Georgescu, B., Shimshoni, I., Meer, P.: Mean shift based clustering in high dimensions: A texture classification example. In: ICCV ’03: Proceedings of the 9th IEEE International Conference on Computer Vision, p. 456. IEEE Computer Society, Washington, DC (2003)

  12. Hauser, H., Ledermann, F., Doleisch, H.: Angular brushing of extended parallel coordinates. In: INFOVIS ’02: Proceedings of the IEEE Symposium on Information Visualization (InfoVis’02), p. 127. IEEE Computer Society, Washington, DC (2002)

  13. He, T., Hong, L., Kaufman, A., Pfister, H.: Generation of transfer functions with stochastic search techniques. In: Proceedings of IEEE Visualization ’96 Conference, pp. 227–234 (1996)

  14. Huang, R., Ma, K.-L.: RGVis: Region growing based techniques for volume visualization. In: Proceedings of Pacific Graphics 2003 Conference, pp. 355–363. IEEE (2003)

  15. Huang, R., Ma, K.-L., McCormick, P., Ward, W.: Visualizing industrial CT volume data for nondestructive testing applications. In: Proceedings of Visualization 2003 Conference, pp. 547–554 (2003)

  16. Inselberg, A.: The plane with parallel coordinates. Visual Comput. 1(2), 69–91 (1985)

    Article  MATH  Google Scholar 

  17. Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters. Pattern Recogn. 24(12), 1167–1186 (1991)

    Article  Google Scholar 

  18. Jain, A.K., Karu, K.: Learning texture discrimination masks. IEEE Trans. Pattern Anal. Mach. Intell. 18(2), 195–205 (1996)

    Article  Google Scholar 

  19. Jankun-Kelly, T.J., Ma, K.-L.: A study of transfer function generation for time-varying volume data. In: Proceedings of Volume Graphics 2001, pp. 51–65 (2001)

  20. Kindlmann, G., Durkin, J.W.: Semi-automatic generation of transfer functions for direct volume rendering. In: IEEE Symposium on Volume Visualization, pp. 79–86 (1998)

  21. Kniss, J., Kindlmann, G., Hansen, C.: Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets. In: Proceedings of IEEE Visualization 2001 Conference, pp. 255–262 (2001)

  22. Konig, A., Groller, E.: Mastering transfer function specification by using VolumePro technology. In: T.L. Kunii (ed.) Spring Conference on Computer Graphics 2001, 17, pp. 279–286 (2001)

  23. LeFohn, A., Cates, J., Whitaker, R.: Interactive, GPU-based level sets for 3D brain tumor segmentation. In: Proceedings of Medical Image Computing and Computer Assisted Intervention (MICCAI), pp. 564–572 (2003)

  24. Levoy, M.: Display of surfaces from volume data. IEEE Comput. Graph. Appl. 8(3), 29–37 (1988)

    Article  Google Scholar 

  25. Lum, E., Ma, K.-L.: Lighting transfer functions for direct volume rendering. In: Proceedings of the IEEE Visualization 2004 Conference, pp. 289–296 (2004)

  26. Marks, J., Andalman, B., Beardsley, P., Freeman, W., Gibson, S., Hodgins, J., Kang, T., Mirtich, B., Pfister, H., Ruml, W., Ryall, K., Seims, J., Shieber, S.: “Design galleries”: A general approach to setting parameters for computer graphics and animation. In: SIGGRAPH ’97 Conference Proceedings, pp. 389–400 (1997)

  27. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Berlin Heidelberg New York (2002)

    Google Scholar 

  28. Pfister, H., Lorensen, B., Bajaj, C., Kindlmann, G., Schroeder, W., Avila, L.S., Martin, K., Machiraju, R., Lee, J.: The transfer function bake-off. IEEE Comput. Graph. Appl. 21(3), 16–22 (2001)

    Article  Google Scholar 

  29. Randen, T., Husøy, J.H.: Filtering for texture classification: A comparative study. IEEE Trans. Pattern Anal. Mach. Intell. 21(4), 291–310 (1999)

    Article  Google Scholar 

  30. Tzeng, F.Y., Ma, K.-L., Lum, E.: A novel interface for higher-dimensional classification of volume data. In: Proceedings of IEEE Visualization 2003 Conference, pp. 505–512 (2003)

  31. Unser, M.: Local linear transforms for texture measurements. Signal Process. 11(1), 61–79 (1986)

    Article  MathSciNet  Google Scholar 

  32. Vaidyanathan, P.P.: Multirate systems and filter banks. Prentice-Hall, Upper Saddle River, NJ (1993)

    MATH  Google Scholar 

  33. Van Gelder, A., Kim, K.: Direct volume rendering with shading via three-dimension textures. In: ACM Symposium on Volume Visualization ’96 Conference Proceedings, pp. 23–30 (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric B. Lum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lum, E., Shearer, J. & Ma, KL. Interactive multi-scale exploration for volume classification. Visual Comput 22, 622–630 (2006). https://doi.org/10.1007/s00371-006-0049-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-006-0049-8

Keywords

Navigation