The Visual Computer

, Volume 22, Issue 6, pp 372–386 | Cite as

Single-strips for fast interactive rendering

  • Pablo Diaz-Gutierrez
  • Anusheel Bhushan
  • M. Gopi
  • Renato Pajarola
Special Issue Paper

Abstract

Representing a triangulated two manifold using a single triangle strip is an NP-complete problem. By introducing a few Steiner vertices, recent works find such a single-strip, and hence a linear ordering of edge-connected triangles of the entire triangulation. In this paper, we extend previous results [10] that exploit this linear ordering in efficient triangle-strip management for high-performance rendering. We present new algorithms to generate single-strip representations that follow different user defined constraints or preferences in the form of edge weights. These functional constraints are application dependent. For example, normal-based constraints can be used for efficient rendering after visibility culling, or spatial constraints for highly coherent vertex-caching. We highlight the flexibility of this approach by generating single-strips with preferences as arbitrary as the orientation of the edges. We also present a hierarchical single-strip management strategy for high-performance interactive 3D rendering.

Keywords

Single-strip Weighted perfect matching Hamiltonian cycle Vertex cache Visibility culling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akeley, K., Haeberli, P., Burns, D.: The tomesh.c program. Tech. Rep. SGI Developer’s Toolbox CD, Silicon Graphics (1990)Google Scholar
  2. 2.
    Arkin, E.M., Held, M., Mitchell, J.S.B., Skiena, S.: Hamiltonian triangulations for fast rendering. Visual Comput. 12(9), 429–444 (1996)Google Scholar
  3. 3.
    Bar-Yehuda, R., Gotsman, C.: Time/space tradeoffs for polygon mesh rendering. ACM Trans. on Graph. 15(2), 141–152 (1996)CrossRefGoogle Scholar
  4. 4.
    Belmonte, O., Remolar, I., Ribelles, J., Chover, M., Rebollo, C., Fernandez, M.: Multiresolution triangle strips. In: IASTED International Conference on Visualization, Imaging and Image Processing (VIIP 2001), pp. 182–187 (2001)Google Scholar
  5. 5.
    Bogomjakov, A., Gotsman, C.: Universal rendering sequences for transparent vertex caching of progressive meshes. In: Watson, B., Buchanan, J.W. (eds.) Proceedings of Graphics Interface 2001, pp. 81–90. Canadian Formation Processing Society (2001). URL citeseer.ist.psu.edu/bogomjakov01universal.htmlGoogle Scholar
  6. 6.
    Chow, M.M.: Optimized geometry compression for real-time rendering. In: VIS ’97: Proceedings of the 8th conference on Visualization ’97, pp. 347–ff. IEEE Computer Society Press, Los Alamitos, CA (1997)Google Scholar
  7. 7.
    Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. ACM Trans. on Graph. 23(3), 905–914 (2004)CrossRefGoogle Scholar
  8. 8.
    Cook, W., Rohe, A.: Computing minimum-weight perfect matchings. INFORMS J. Comput. 11, 138–148 (1999)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Deering, M.: Geometry compression. URL citeseer.ifi.unizh.ch/654211.htmlGoogle Scholar
  10. 10.
    Diaz-Gutierrez, P., Bhushan, A., Gopi, M., Pajarola, R.: Constrained strip generation and management for efficient interactive 3D rendering. In: Proceedings Computer Graphics International Conference, pp. 115–121. IEEE Computer Society (2005)Google Scholar
  11. 11.
    Diaz-Gutierrez, P., Gopi, M.: Quadrilateral and tetrahedral mesh stripification using 2-factor partitioning of the dual graph. Visual Comput. 21(8–10), 689–697 (2005)Google Scholar
  12. 12.
    Diaz-Gutierrez, P., Gopi, M., Pajarola, R.: Hierarchyless simplification, stripification and compression of triangulated two-manifolds. Comput. Graph. Forum 24(3), 457–467 (2005)CrossRefGoogle Scholar
  13. 13.
    Dillencourt, M.: Finding Hamiltonian cycles in delaunay triangulations is NP-complete. In: Canadian Conference on Computational Geometry (CCCG), pp. 223–228 (1992)Google Scholar
  14. 14.
    El-Sana, J.A., Azanli, E., Varshney, A.: Skip strips: Maintaining triangle strips for view-dependent rendering. In: Ebert, D., Gross, M., Hamann, B. (eds.) IEEE Visualization ’99, pp. 131–138. San Francisco (1999). URL citeseer.ist.psu.edu/el-sana99skip.htmlGoogle Scholar
  15. 15.
    Evans, F., Skiena, S., Varshney, A.: Completing sequential triangulations is hard. Tech. Rep., Department of Computer Science, State University of New York at Stony Brook (1996)Google Scholar
  16. 16.
    Evans, F., Skiena, S.S., Varshney, A.: Optimizing triangle strips for fast rendering. In: Yagel, R., Nielson G.M. (eds.) IEEE Visualization, pp. 319–326 (1996)Google Scholar
  17. 17.
    Garland, M., Willmott, A., Heckbert, P.S.: Hierarchical face clustering on polygonal surfaces. In: SI3D ’01: Proceedings of the 2001 Symposium on Interactive 3D graphics, pp. 49–58. ACM Press, New York (2001). DOI http://doi.acm.org/10.1145/364338.364345CrossRefGoogle Scholar
  18. 18.
    Gopi, M.: Controllable single-strip generation for triangulated surfaces. In: Pacific Conference on Computer Graphics and Applications, pp. 61–69. IEEE Computer Society (2004)Google Scholar
  19. 19.
    Gopi, M., Eppstein, D.: Single-strip triangulation of manifolds with arbitrary topology. Comput. Graph. Forum 23(3), 371–379 (2004)CrossRefGoogle Scholar
  20. 20.
    Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets. In: European Symposium on Algorithms, pp. 179–193. Springer (1996)Google Scholar
  21. 21.
    Hoppe, H.: Optimization of mesh locality for transparent vertex caching. In: A. Rockwood (ed.) Siggraph 1999, Computer Graphics Proceedings, pp. 269–276. Addison Wesley Longman, Los Angeles, CA (1999). URL citeseer.ist.psu.edu/hoppe99optimization.htmlCrossRefGoogle Scholar
  22. 22.
    Lu, H.I., Ravi, R.: Approximating maximum leaf spanning trees in almost linear time. J. Algorithms 29(1), 132–141 (1998)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Kornmann, D.: Fast and simple triangle strip generation. In: Varian Medical Systems Finland, Espoo (1999)Google Scholar
  24. 24.
    Low, K.L., Tan, T.S.: Model simplification using vertex-clustering. In: SI3D ’97: Proceedings of the 1997 Symposium on Interactive 3D Graphics, pp. 75–ff. ACM Press, New York (1997). DOI http://doi.acm.org/10.1145/253284.253310Google Scholar
  25. 25.
    Luebke, D., Erikson, C.: View-dependent simplification of arbitrary polygonal environments. In: SIGGRAPH ’97: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 199–208. ACM Press/Addison-Wesley Publishing Co., New York (1997). DOI http://doi.acm.org/10.1145/258734.258847CrossRefGoogle Scholar
  26. 26.
    Luebke, D., Erikson, C.: View-dependent simplification of arbitrary polygonal environments. Comput. Graph. 31(Annual Conference Series), pp. 199–208 (1997)Google Scholar
  27. 27.
    Luebke, D., Reddy, M., Cohen, J.D., Varshney, A., Watson, B., Huebner, R.: Level of Detail for 3D Graphics. Morgan Kaufmann Publishers, San Francisco, CA (2003)Google Scholar
  28. 28.
    Mitani, J., Suzuki, H.: Making papercraft toys from meshes using strip-based approximate unfolding. ACM Trans. Graph. 23(3), 259–263 (2004)CrossRefGoogle Scholar
  29. 29.
    Neider, J., Davis, T., Woo, M.: OpenGL Programming Guide. Addison Wesley, Reading, MA (1993)Google Scholar
  30. 30.
    Pajarola, R., Antonijuan, M., Lario, R.: Quadtin: Quadtree based triangulated irregular networks. URL citeseer.ifi.unizh.ch/pajarola02quadtin.htmlGoogle Scholar
  31. 31.
    Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Commun. ACM 33(6), 668–676 (1990)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Shafae, M., Pajarola, R.: Dstrips: Dynamic triangle strips for real-time mesh simplification and rendering. In: Jon Rokne, W.W., Klein, R. (eds.) Proceedings Pacific Graphics 2003, pp. 271–280. IEEE (2003)Google Scholar
  33. 33.
    Stewart, A.J.: Tunneling for triangle strips in continuous level-of-detail meshes. In: Graphics Interface 2001, pp. 91–100. Canadian Formation Processing Society (2001)Google Scholar
  34. 34.
    Yoon, S.E., Lindstrom, P., Pascucci, V., Manocha, D.: Cache-oblivious mesh layouts. ACM Trans. Graph. 24(3), 886–893 (2005)CrossRefGoogle Scholar
  35. 35.
    Vanecek, P., Kolingerová, I.: Multi-path algorithm for triangle strips. In: Computer Graphics International, pp. 2–9 (2004)Google Scholar
  36. 36.
    Velho, L., de Figueiredo, L.H., Gomes, J.: Hierarchical generalized triangle strips. Visual Comput. 15(1), 21–35 (1999)CrossRefGoogle Scholar
  37. 37.
    Xiang, Held, Mitchell: Fast and effective stripification of polygonal surface models (short). In: SODA: ACM-SIAM Symposium on Discrete Algorithms ( A Conference on Theoretical and Experimental Analysis of Discrete Algorithms) (1999). URL citeseer.ist.psu.edu/xiang99fast.htmlGoogle Scholar
  38. 38.
    Peterson, J.P.C.: Die theorie der regulären graphen. Acta Mathematica 15, 193–220 (1891)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Pablo Diaz-Gutierrez
    • 1
  • Anusheel Bhushan
    • 1
  • M. Gopi
    • 2
  • Renato Pajarola
    • 3
  1. 1.444, Computer Science BuildingUniversity of California, IrvineIrvineUSA
  2. 2.430, Computer Science BuildingUniversity of California, IrvineIrvineUSA
  3. 3.Department of InformaticsUniversity of ZurichZürichSwitzerland

Personalised recommendations