Skip to main content
Log in

Mesh fusion using functional blending on topologically incompatible sections

  • Regular Paper
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Three-dimensional mesh fusion provides an easy and fast way to create new mesh models from existing ones. We introduce a novel approach of mesh fusion in this paper based on functional blending. Our method has no restriction of disk-like topology or one-ring opening on the meshes to be merged. First of all, sections with boundaries of the under-fusing meshes are converted into implicit representations. An implicit transition surface, which joins the sections together while keeping smoothness at the boundaries, is then created based on cubic Hermite functional blending. Finally, the implicit surface is tessellated to form the resultant mesh. Our scheme is both efficient and simple, and with it users can easily construct interesting, complex 3D models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Adams, B., Dutré, P.: Interactive boolean operations on surfel-bounded solids. ACM Trans. on Graph. 22(3), 651–656 (2003)

    Article  Google Scholar 

  2. Bajaj, C.L., Coyle, E.J., Lin, K.N.: Arbitrary topology shape reconstruction from planar cross sections. Graph. Models Image Process. 58(6), 524–543 (1996)

    Article  Google Scholar 

  3. Barequet, G., Sharir, M.: Piecewise-linear interpolation between polygonal slices. Comput. Vis. Image Understanding 63(2), 251–272 (1994)

    Article  Google Scholar 

  4. Barequet G., Shapiro D., Tal, A.: Multilevel sensitive reconstruction of polyhedral surfaces from parallel slices. Visual Comput. 16(2), 116–133 (2000)

    Article  Google Scholar 

  5. Bedi, S.: Surface design using functional blending. Comput. Aided Des. 24(9), 505–511 (1992)

    Article  MATH  Google Scholar 

  6. Bellman, R.E.: Introduction to Matrix Analysis. McGraw-Hill, New York (1960)

    MATH  Google Scholar 

  7. Biermann, H., Martin, I., Bernardini, F., Zorin, D.: A cut-and-paste editing of multiresolution surfaces. ACM Trans. on Graph. 21(3), 330–338 (2002)

    Article  Google Scholar 

  8. Bloothmental, J.:An implicit surface polygonizer. Graphics Gems IV, 324–349 (1994)

  9. Carr, J.C., Beaston, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3d objects with radial basis functions. In: Proc. of SIGGRAPH’2001, pp. 67–76 (2001)

  10. Cong, G., Parvin, B.: Robust and efficient surface reconstruction from contours. Visual Comput. 17(4), 199–208 (2001)

    Article  MATH  Google Scholar 

  11. Conte, S., de Boor, C.: Elementary Numerical Analysis: An Algorithm Approach. McGraw-Hill, New York (1980)

    Google Scholar 

  12. Elber, G.: Generalized filleting and blending operations toward functional and decorative applications. Graphical Models 67(3), 189–203 (2005)

    Article  Google Scholar 

  13. Farin, G.: Curves and Surfaces for CAGD. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  14. Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal A., Rusinkiewicz, S., Dobkin, D.: Modeling by example. ACM Trans. on Graph. 23(3), 652–663 (2004)

    Article  Google Scholar 

  15. Fu, H., Tai, C.L., Zhang, H.: Topology-free cut-and-paste editing over meshes. Geometric Modeling and Processing’2004, IEEE Computer Society Press, pp. 173–184 (2004)

  16. Kanai T., Suzuki, H., Kimura, F.: Three dimensional geometric metamorphosis based on harmonic maps. Visual Comput. 14(4), 166–176 (1998)

    Article  Google Scholar 

  17. Kanai, T., Suzuki, H., Mitani, J., Kimura, F.: Interactive mesh fusion based on local 3D metamorphosis. In: Proc. of Graphics Interface’99, pp. 148–156 (1999)

  18. Lorensen, W., Cline, H.: Marching cubes: A high resolution 3D surface construction algorithm. Comput. Graph. 21(4), 163–169 (1987)

    Article  Google Scholar 

  19. Museth, K., Breen, D., Whitaker, R., Barr, A.: Level set surface editing operators. ACM Trans. on Graph. 21(3), 330–338 (2002)

    Google Scholar 

  20. Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.: Multi-level partition of unity implicits. ACM Trans. on Graph. 22(3), 463–470 (2003)

    Article  Google Scholar 

  21. Pauly, M., Keiser, R., Kobbelt, K.P., Gross, M.: Shape modeling with point-sampled geometry. ACM Trans. on Graph. 22(3), 641–650 (2003)

    Article  Google Scholar 

  22. Singh K., Parent, R.: Joining polyhedral objects using implicitly defined surfaces. Visual Comput. 17(7), 415–428 (2001)

    MATH  Google Scholar 

  23. Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M., Rössl, C., Seidel, H.P.: Laplacian surface editing. In: Proc. of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, Eurographics Association, pp. 179–188 (2004)

  24. Turk, G., O’Brien, J.: Shape transformation using variational implicit functions. In: Proc. of SIGGRAPH’1999, pp. 335–342 (1999)

  25. Turk, G., O’Brien, J.: Modelling with implicit surfaces that interpolate. ACM Trans. on Graph. 21(4), 855–873 (2002)

    Article  Google Scholar 

  26. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.: Mesh editing with Poisson-based gradient field manipulation. ACM Trans. on Graph. 23(3), 664–651 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, X., Lin, J., Wang, C. et al. Mesh fusion using functional blending on topologically incompatible sections. Visual Comput 22, 266–275 (2006). https://doi.org/10.1007/s00371-006-0004-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-006-0004-8

Keywords

Navigation