The Visual Computer

, Volume 21, Issue 8–10, pp 774–782 | Cite as

Shell radiance texture functions

  • Ying Song
  • Yanyun Chen
  • Xin Tong
  • Stephen Lin
  • Jiaoying Shi
  • Baining Guo
  • Heung-Yeung Shum
original article

Abstract

The appearance of an inhomogeneous translucent material depends substantially on its volumetric variations and their effects upon subsurface scattering. For efficient rendering that accounts for both surface mesostructures and volumetric variations of such materials, shell texture functions have precomputed irradiance within a volume with respect to incoming illumination, but even with this irradiance data a fair amount of runtime computation is still required. Rather than precompute volume irradiance, we introduce the shell radiance texture function (SRTF), which relates incoming illumination more directly to outgoing surface radiance by representing a set of subsurface transport components from which surface radiance can be calculated without ray marching or runtime evaluation of dipole diffusion. Using this precomputed SRTF information, inhomogeneous objects can be rendered in real time with distant local lighting or global lighting.

Keywords

Subsurface scattering Mesostructure Texture mapping Real-time rendering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blasi, P., Le Saec, B., Schlick, C.: An importance driven Monte-Carlo solution to the global illumination problem. In: Eurographics Workshop on Rendering, pp. 173–183 (1994)Google Scholar
  2. 2.
    Cook, R.L.: Shade trees. In: Computer Graphics, pp. 223–331 (1984)Google Scholar
  3. 3.
    Carr, N.A., Hall, J.D., Hart, J.C.: GPU algorithms for radiosity and subsurface scattering. In: Proceedings of Graphics Hardware, pp. 51–59 (2003)Google Scholar
  4. 4.
    Chen, Y., Tong, X., Wang, J., Lin, S., Guo, B., Shum, H.Y.: Shell texture functions. In: Proceedings of ACM SIGGRAPH, pp. 343–353 (2004)Google Scholar
  5. 5.
    Dana, K.J., Ginneken, B.V., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real-world surfaces. ACM Trans. Graph. 18(1), 1–34 (1999)Google Scholar
  6. 6.
    Dachsbacher, C., Stamminger, M.: Translucent shadow maps. In: Eurographics Rendering Techniques, pp. 197–201 (2003)Google Scholar
  7. 7.
    Goesele, M., Lensch, H.P.A., Lang, J., Fuchs, C., Seidel, H.-P.: DISCO: acquisition of translucent objects. In: Proceedings of ACM SIGGRAPH, pp. 835–844 (2004)Google Scholar
  8. 8.
    Hao, X., Baby, T., Varshney, A.: Interactive subsurface scattering for translucent meshes. In: Symposium on Interactive 3D Graphics, pp. 75–82 (2003)Google Scholar
  9. 9.
    Hao, X., Varshney, A.: Real-time rendering of translucent meshes. ACM Trans. Graph. 23, 120–142 (2004)Google Scholar
  10. 10.
    Jensen, H.W., Buhler, J.: A rapid hierarchical rendering technique for translucent materials. ACM Trans. Graph. 21(3), 576–581 (2002)Google Scholar
  11. 11.
    Jensen, H.W., Christensen, P.H.: Efficient simulation of light transport in scenes with participating media using photon maps. In: Proceedings of ACM SIGGRAPH, pp. 311–320 (1998)Google Scholar
  12. 12.
    Jensen, H.W., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. In: Proceedings of ACM SIGGRAPH, pp. 511–518 (2001)Google Scholar
  13. 13.
    Lensch, H.P.A., Goesele, M., Bekaert, P., Kautz, J., Magnor, M.A., Lang, J., Seidel, H.P.: Interactive rendering of translucent objects. In: Proceedings of Pacific Graphics, pp. 214–224 (2002)Google Scholar
  14. 14.
    Lafortune, E.P., Willems, Y.D.: Rendering participating media with bidirectional path tracing. In: Eurographics Rendering Techniques, pp. 91–100 (1996)Google Scholar
  15. 15.
    Müller, G., Meseth, J., Sattler, M., Sarlette, R., Klein, R.: Acquisition, synthesis and rendering of bidirectional texture functions. Comput. Graph. Forum 2491), 83–109 (2005)Google Scholar
  16. 16.
    Müller, G., Meseth, J., Klein, R.: Fast environmental lighting for local-PCA encoded BTFs. In: Proceedings of Computer Graphics International, pp. 198–205 (2004)Google Scholar
  17. 17.
    Ma, W-C., Chao, S-H., Tseng, Y-T., Chuang, Y-Y., Chang, C-F., Chen, B-Y., Ouhyoung, M.: Level-of-detail representation of bidirectional texture functions for real-time rendering. In: Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games, pp. 187–194 (2005)Google Scholar
  18. 18.
    Neyret, F.: Modeling, animating, and rendering complex scenes using volumetric textures. In: IEEE Trans. Vis. Comput. Graph. 4(1), 55–70 (1998)Google Scholar
  19. 19.
    Premože, S., Ashikhmin, M., Tessendorf, J., Ramamoorthi, R., Nayar, S.: Practical rendering of multiple scattering effects in participating media. In: Eurographics Symposium on Rendering (2004)Google Scholar
  20. 20.
    Sattler, M., Sarlette, R., Klein, R.: Effcient and realistic visualization of cloth. In: Proceedings of Eurographics Symposium on Rendering, pp. 167–177 (2003)Google Scholar
  21. 21.
    Sloan, P.P., Hall, J., Hart, J., Snyder, J.: Clustered principal components for precomputed radiance transfer. ACM Trans. Graph. 2223, 382–391 (2003)Google Scholar
  22. 22.
    Sloan, P.P., Liu, X., Shum, H.Y., Snyder, J.: Bi-scale radiance transfer. ACM Trans. Graph. 22(3), 370–375 (2003)Google Scholar
  23. 23.
    Stam, J.: Multiple scattering as a diffusion process. In: Eurographics Rendering Techniques, pp. 41–50 (1995)Google Scholar
  24. 24.
    Wood, D., Azuma, D., Aldinger, W., Curless, B., Duchamp, T., Salesin, D., Stuetzle, W.: Surface light fields for 3D photography. In: Proceedings of ACM SIGGRAPH (2000)Google Scholar
  25. 25.
    Wang, X., Tong, X., Lin, S., Hu, S., Guo, B., Shum, H.-Y.: Generalized displacement mapping. In: Proceedings of Eurographics Symposium on Rendering (2004)Google Scholar
  26. 26.
    Wang, L., Wang, X., Tong, X., Hu, S., Guo, B., Shum, H.-Y.: View-dependent displacement mapping. In: Proceedings of ACM SIGGRAPH (2003)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Ying Song
    • 1
  • Yanyun Chen
    • 2
  • Xin Tong
    • 2
  • Stephen Lin
    • 2
  • Jiaoying Shi
    • 1
  • Baining Guo
    • 2
  • Heung-Yeung Shum
    • 2
  1. 1.Zhejiang UniversityP.R. China
  2. 2.Microsoft Research AsiaP.R. China

Personalised recommendations