Skip to main content
Log in

Morphometric scaling of subsurface vent complexes: implications for a new classification scheme

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

This paper provides a novel classification scheme for magma-induced subsurface vent complexes based on morphometric data and stacking patterns. The study area is the Naglfar Dome in the Vøring Basin where the interaction between magmatic intrusions and vent complexes is well known. Seismic interpretation, characterization and morphometric analyses of 35 vent complexes observed within the Palaeocene-Eocene strata were done from a high-quality, three-dimensional seismic reflection data. The vent complexes have dome-shaped, eye-shaped, fault-controlled and reactivated upper termini, and are linked to their root zones by columnar, downward-tapered and fault-related fluid conduits or pipes. Statistical analyses and cross plots of L-A and Dmax-Hmax allowed the discrimination of vents and pipes into their genetic types. A new classification scheme based on the morphometric sub-division and structures of subsurface vent complexes is introduced to include S-P-V, S-P-F, V-P-V and V-P-F types. These combinations freshly demonstrate the importance of morphometric data at deciphering the nature, timing, classification and activity of subsurface fluid vent complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Alvarenga RS, Iacopini D, Kuchle J, Scherer CMS, Goldberg K (2016) Seismic characteristics and distribution of hydrothermal vent complexes in the Cretaceous offshore rift section of the Campos Basin, offshore Brazil. Marine and Petroleum Geology 74:12–25. https://doi.org/10.1016/j.marpetgeo.2016.03.030

    Article  Google Scholar 

  • Andresen KJ (2012) Fluid flow features in hydrocarbon plumbing systems: what do they tell us about the basin evolution? Marine Geology 332–334:89–108. https://doi.org/10.1016/j.margeo.2012.07.006

    Article  Google Scholar 

  • Andresen KJ, Huuse M (2011) “Bulls-eye” pockmarks and polygonal faulting in the Lower Congo Basin: relative timing and implications for fluid expulsion during shallow burial. Marine Geology 279:111–127. https://doi.org/10.1016/j.margeo.2010.10.016

    Article  Google Scholar 

  • Bischoff A, Nicol A, Cole J, Gravley D (2019) Stratigraphy of architectural elements of a buried monogenetic volcanic system and implications for geoenergy exploration

  • Brekke H (2000) The tectonic evolution of the Norwegian Sea Continental Margin with emphasis on the Vøring and Møre Basins. Geol Soc London, Spec Publ 167:327–378. https://doi.org/10.1144/GSL.SP.2000.167.01.13

    Article  Google Scholar 

  • Brown AR (2004) Interpretation of three-dimensional seismic data, sixth ed. American Association of Petroleum Geologists (AAPG), Tulsa

  • Buiter SJH, Torsvik TH (2014) A review of Wilson Cycle plate margins: a role for mantle plumes in continental break-up along sutures? Gondwana Research 26:627–653. https://doi.org/10.1016/j.gr.2014.02.007

    Article  Google Scholar 

  • Chopra S, Marfurt KJ (2007) Seismic attributes for fault/fracture characterization. In: SEG Technical Program Expanded Abstracts 2007. Society of Exploration Geophysicists, pp 1520–1524

  • Doré AG, Lundin ER, Jensen LN, et al (1999) Principal tectonic events in the evolution of the northwest European Atlantic margin. In: Geological society, London, petroleum geology conference series. Geological Society of London, pp 41–61

  • Eruteya, O.E., Waldmann, N., Schalev, D., Makovsky, Y., Ben-Avraham, Z., 2015. Intra- to post-Messinian deep-water gas piping in the Levant Basin, SE Mediterranean. Mar. Pet. Geol., The Messinian events and hydrocarbon exploration in the Mediterranean 66, 246–261. https://doi.org/10.1016/j.marpetgeo.2015.03.007

  • Fournier RO (1999) Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Economic Geology 94:1193–1211. https://doi.org/10.2113/gsecongeo.94.8.1193

    Article  Google Scholar 

  • Gartrell A, Zhang Y, Lisk M, Dewhurst D (2003) Enhanced hydrocarbon leakage at fault intersections: an example from the Timor Sea, Northwest Shelf, Australia. J Geochemical Explor 78:361–365

    Article  Google Scholar 

  • Grosse P, van Wyk de Vries B, Euillades PA, Kervyn M, Petrinovic IA (2012) Systematic morphometric characterization of volcanic edifices using digital elevation models. Geomorphology 136:114–131. https://doi.org/10.1016/j.geomorph.2011.06.001

    Article  Google Scholar 

  • Grosse P, van Wyk de Vries B, Petrinovic IA, Euillades PA, Alvarado GE (2009) Morphometry and evolution of arc volcanoes. Geology 37:651–654. https://doi.org/10.1130/G25734A.1

    Article  Google Scholar 

  • Hansen DM, Cartwright J (2006) The three-dimensional geometry and growth of forced folds above saucer-shaped igneous sills. Journal of Structural Geology 28:1520–1535. https://doi.org/10.1016/j.jsg.2006.04.004

    Article  Google Scholar 

  • Hansen DM, Redfern J, Federici F, di Biase D, Bertozzi G (2008) Miocene igneous activity in the Northern Subbasin, offshore Senegal, NW Africa. Marine and Petroleum Geology 25:1–15. https://doi.org/10.1016/j.marpetgeo.2007.04.007

    Article  Google Scholar 

  • Hansen DM (2006) The morphology of intrusion-related vent structures and their implications for constraining the timing of intrusive events along the NE Atlantic margin. Journal of the Geological Society of London 163:789–800

    Article  Google Scholar 

  • Hutnak M, Hurwitz S, Ingebritsen SE, Hsieh PA (2009) Numerical models of caldera formation: effects of multiphase and multicomponent hydrothermal fluid flow. J Geophys Res 114:doi:https://doi.org/10.1029/2008JB006151

  • Jamtveit B, Svensen H, Podladchikov YY, Planke S (2004) Hydrothermal vent complexes associated with sill intrusions in sedimentary basins. Geol Soc London, Spec Publ 234:233–241. https://doi.org/10.1144/GSL.SP.2004.234.01.15

    Article  Google Scholar 

  • Kervyn M, Ernst GGJ, van Wyk de Vries B, Mathieu L, Jacobs P (2009) Volcano load control on dyke propagation and vent distribution: insights from analogue modeling. Journal of Geophysical Research - Solid Earth 114

  • Kjoberg S, Schmiedel T, Planke S, Svensen HH, Millett JM, Jerram DA, Galland O, Lecomte I, Schofield N, Haug ØT, Helsem A (2017) 3D structure and formation of hydrothermal vent complexes at the Paleocene-Eocene transition, the Møre Basin, mid-Norwegian margin. Interpretation 5:SK65–SK81

    Article  Google Scholar 

  • Leduc AM, Davies RJ, Swarbrick RE, Imber J (2013) Fluid flow pipes triggered by lateral pressure transfer in the deepwater western Niger Delta. Marine and Petroleum Geology 43:423–433

    Article  Google Scholar 

  • Lorenz V (1985) Maars and diatremes of phreatomagmatic origin; a review. South African J Geol 88:459–470

    Google Scholar 

  • Løseth H, Wensaas L, Arntsen B, Hanken NM, Basire C, Graue K (2011) 1000 m long gas blow-out pipes. Marine and Petroleum Geology 28:1047–1060

    Article  Google Scholar 

  • Magee C, Duffy OB, Purnell K, Bell RE, Jackson CAL, Reeve MT (2016) Fault-controlled fluid flow inferred from hydrothermal vents imaged in 3D seismic reflection data, offshore NW Australia. Basin Research 28:299–318

    Article  Google Scholar 

  • Magee C, Hunt-Stewart E, Jackson CAL (2013) Volcano growth mechanisms and the role of sub-volcanic intrusions: insights from 2D seismic reflection data. Earth and Planetary Science Letters 373:41–53. https://doi.org/10.1016/j.epsl.2013.04.041

    Article  Google Scholar 

  • Mazzini A, Svensen H, Hovland M, Planke S (2006) Comparison and implications from strikingly different authigenic carbonates in a Nyegga complex pockmark, G11, Norwegian Sea. Marine Geology 231:89–102

    Article  Google Scholar 

  • Moss JL, Cartwright J (2010) 3D seismic expression of km-scale fluid escape pipes from offshore Namibia. Basin Research 22:481–501

    Article  Google Scholar 

  • Omosanya KO, Johansen SE, Eruteya OE, Waldmann N (2017) Forced folding and complex overburden deformation associated with magmatic intrusion in the Vøring Basin, offshore Norway. Tectonophysics 706–707:14–34. https://doi.org/10.1016/j.tecto.2017.03.026

    Article  Google Scholar 

  • Omosanya KO, Eruteya OE, Siregar ES, Zieba KJ, Johansen SE, Alves TM, Waldmann ND (2018) Three-dimensional (3-D) seismic imaging of conduits and radial faults associated with hydrothermal vent complexes (Vøring Basin, Offshore Norway). Marine Geology 399:115–134

    Article  Google Scholar 

  • Omosanya KO, Maia AR, Eruteya OE (2020) Seismic, morphologic and scale variabilities of subsurface pipes and vent complexes in a magma-rich margin. Bulletin of Volcanology 82:40. https://doi.org/10.1007/s00445-020-01379-3

  • Omosanya KO (2020) Cenozoic tectonic inversion in the Naglfar Dome, Norwegian North Sea. Marine and Petroleum Geology 118:104461. https://doi.org/10.1016/j.marpetgeo.2020.104461

    Article  Google Scholar 

  • Pereira LAGR, Pinheiro LM, Abbassi H (2009) Atributos Sísmicos na Caracterização de Reservatórios de Hidrocarbonetos. Seismic Attributes in Hydrocarbon Reservoirs Characterization. Geosci Master:183

  • Planke S, Alvestad E, Eldholm O (1999) Seismic characteristics of basaltic extrusive and intrusive rocks. The Leading Edge 18:342–348

    Article  Google Scholar 

  • Planke S, Rasmussen T, Rey SS, Myklebust R (2005) Seismic characteristics and distribution of volcanic intrusions and hydrothermal vent complexes in the Vøring and Møre basins. In: Petroleum Geology: North-West Europe and Global Perspectives – Proceedings of the 6th Petroleum Geology Conference. Geological Society of London, pp 833–844

  • Provost A, Annen C, Le J, Gene  De (2001) The long-term growth of volcanic edi ® ces : numerical modelling of the role of dyke intrusion and lava- ¯ ow emplacement. 105:

  • Ren S, Faleide JI, Eldholm O, Skogseid J, Gradstein F (2003) Late Cretaceous-Paleocene tectonic development of the NW Vøring Basin. Marine and Petroleum Geology 20:177–206. https://doi.org/10.1016/S0264-8172(03)00005-9

    Article  Google Scholar 

  • Reynolds P, Holford S, Schofield N (2016) The facies architecture of submarine basaltic volcanoes and their effects on fluid flow. ASEG Ext Abstr 2016:1–6

    Google Scholar 

  • Rossi MJ (1996) Morphology and mechanism of eruption of postglacial shield volcanoes in Iceland. Bulletin of Volcanology 57:530–540. https://doi.org/10.1007/BF00304437

    Article  Google Scholar 

  • Rubin AM (2003) Propagation of magma-filled cracks. Annual Review of Earth and Planetary Sciences 23:287–336

    Article  Google Scholar 

  • Sato H, Taniguchi H (1997) Relationship between crater size and ejecta volume of recent magmatic and phreato-magmatic eruptions: implications for energy partitioning. Geophysical Research Letters 24:205–208. https://doi.org/10.1029/96GL04004

    Article  Google Scholar 

  • Schofield A, Totterdell J, Australia G (2008) Distribution, timing and origin of magmatism in the Bight and Eucla Basins

  • Segall P (2013) Volcano deformation and eruption forecasting. Geol Soc London, Spec Publ 380:85–106. https://doi.org/10.1144/SP380.4

    Article  Google Scholar 

  • Sheriff RE, Geldart LP (1999) Exploration seismology:(Translated by Chu, Y., Li, CC, and Wang HW)

  • Siregar E, Omosanya KO, Magee C, Johansen SE (2019) Impacts of fault-sill interactions on sill emplacement in the Vøring Basin, Norwegian North Sea. Journal of Structural Geology 126:156–174

    Article  Google Scholar 

  • Skogseid J, Pedersen T, Eldholm O, Larsen BT (1992) Tectonism and magmatism during NE Atlantic continental break-up: the Vøring Margin. Geol Soc London, Spec Publ 68:305–320. https://doi.org/10.1144/GSL.SP.1992.068.01.19

    Article  Google Scholar 

  • Smallwood JR, Maresh J (2002) The properties, morphology and distribution of igneous sills: modelling, borehole data and 3D seismic from the Faroe-Shetland area. Geol Soc London, Spec Publ 197:271–306. https://doi.org/10.1144/GSL.SP.2002.197.01.11

    Article  Google Scholar 

  • Song J, Alves TM, Omosanya KO, Hales TC, Ze T (2020) Tectonic evolution of strike-slip zones on continental margins and their impact on the development of submarine landslides (Storegga Slide, northeast Atlantic). GSA Bulletin. https://doi.org/10.1130/B35421.1

  • Sparks RSJ, Biggs J, Neuberg JW (2012) Monitoring volcanoes. Science (80- ) 335:1310–1311. doi: https://doi.org/10.1126/science.1219485

  • Subrahmanyam D, Rao PH (2008) Seismic attributes-a review. 7th Int Conf Expo Pet Geophys Hyderabad, India 7

  • Svensen H, Jamtveit B, Planke S, Chevallier L (2006) Structure and evolution of hydrothermal vent complexes in the Karoo Basin, South Africa. Journal of the Geological Society of London 163:671–682. https://doi.org/10.1144/1144-764905-037

    Article  Google Scholar 

  • Svensen H, Planke S, Jamtveit B, Pedersen T (2003) Seep carbonate formation controlled by hydrothermal vent complexes: a case study from the Vøring Basin, the Norwegian Sea. Geo-Marine Lett 23:351–358. https://doi.org/10.1007/s00367-003-0141-2

    Article  Google Scholar 

  • Taner MT (2001) Seismic attributes. CSEG Rec 26:48–56

  • Torne M, Fernandez M, Wheeler W, Karpuz R (2003) Three-dimensional crustal structure of the Vøring Margin (NE Atlantic): a combined seismic and gravity image. J Geophys Res Solid Earth 108

  • Van Kranendonk MJ (2006) Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: a review of the evidence from c. 3490-3240 Ma rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia. Earth-Science Rev 74:197–240

    Article  Google Scholar 

  • White JDL, Ross P-S (2011) Maar-diatreme volcanoes: a review. Journal of Volcanology and Geothermal Research 201:1–29

    Article  Google Scholar 

  • Yilmaz Ö (2001) Seismic data analysis: processing, inversion, and interpretation of seismic data. Society of exploration geophysicists

  • Zhao F, Wu S, Sun Q, Huuse M, Li W, Wang Z (2014) Submarine volcanic mounds in the Pearl River Mouth Basin, northern South China Sea. Marine Geology 355:162–172. https://doi.org/10.1016/j.margeo.2014.05.018

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shambel B. Mituku.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Shambel B. Mituku was formerly affiliated with the Department of Petroleum and Geoscience, Norwegian University of Science and Technology, NTNU, Trondheim

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mituku, S.B., Omosanya, K.O. Morphometric scaling of subsurface vent complexes: implications for a new classification scheme. Geo-Mar Lett 40, 659–674 (2020). https://doi.org/10.1007/s00367-020-00661-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-020-00661-9

Keywords

Navigation