Skip to main content

Advertisement

Log in

Methane seeps on the outer shelf of the Laptev Sea: characteristic features, structural control, and benthic fauna

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Two areas with cold methane seeps on the outer shelf of the Laptev Sea were studied by two interdisciplinary expeditions onboard the RV Akademik Mstislav Keldysh in August–September of 2017 and 2018. These fields lie in water between depths of 63 and 73 m, and in a region of growing interest to the international community. Characteristic features of the methane seeps were obtained, which include their distribution and appearance on the seabed based on acoustic anomalies and seafloor observations. The cold seeps are part of a domain striking in a SW–NE direction along the Laptev Sea Rift System, Khatanga–Lomonosov Fracture Zone, and the Gakkel Ridge junction, and its structure was determined by shallow faults on the outer shelf. These faults are related to subsidence of the outer shelf cutting the caprock formed by permafrost and gas hydrates. Faults serve as conduits for an intense bubble methane discharge at the seabed. Shallow-water methane seep fauna were described for the first time in the Siberian Arctic. The frenulate siboglinid tubeworm Oligobrachia haakonmosbiensis was among the dominant species of the methane seep communities. A newly discovered gastropod species Frigidalvania sp. was also found in abundance at the seeps as well as an ophiuroid Ophiocten sericeum. Significant differences were observed between benthic communities of the two seep fields and background fauna including integral community parameters and the presence/absence of certain species. Development of shallow methane seep communities in the Laptev Sea apparently is related to extremely oligotrophic conditions in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Anisimov OA, Borsenkova II, Lavrov SA, Strelchenko YuG (2012) Recent dynamics of the permafrost and methane emission on the shelf of Eastern Arctic Seas. Led i Sneg (Ice and Show) 2 (118): 97–105 (in Russian)

  • Anokhin VM, Gusev YeA (2003) Faulting tectonics of the oceanic and continental crust junction in the Laptev Sea. Vestnik Tomskogo universiteta. Problemy geologii I geographii Sibiri. Materialy nauchnoi konpherentsii. Attachment 3 (1): 21–23 (in Russian)

  • Are FE (2003) Shore face of the Arctic seas - a natural laboratory for subsea permafrost dynamics. In: Phillips M, Springman SM, Arenson LU (eds) Permafrost. Swets & Zeitlinger, Lisse, pp 27–32

    Google Scholar 

  • Åström EK, Carroll ML, Ambrose WG Jr, Carroll J (2016) Arctic cold seeps in marine methane hydrate environments: impacts on shelf macrobenthic community structure offshore Svalbard. Marine Ecology Progress Series 552:1–18. https://doi.org/10.3354/meps11773

    Article  Google Scholar 

  • Berndt C, Feseker T, Treude T, Krastel S, Liebetrau V, Niemann H, Bertics VJ, Dumke I, Dunnbier K, Ferre B, Graves C, Gross F, Hissmann K, Huhnerbach KS, Lieser K, Schauer J, Steinle L (2014) Temporal constraints on hydrate-controlled methane seepage off Svalbard. Science 343:284–287. https://doi.org/10.1126/science.1246298

    Article  Google Scholar 

  • Bogoyavlensky V, Kazanin G, Kishаnkov A (2018) Dangerous gas-saturated objects in the world ocean: the Laptev Sea. Burenie i nepht (Drilling and oil) 5: 20–29 (in Russian)

  • Buffett B, Archer D (2004) Global inventory of methane clathrate: sensitivity to changes in the deep ocean. Earth and Planetary Science Letters 227:185–199. https://doi.org/10.1016/j.epsl.2004.09.005

    Article  Google Scholar 

  • Buzhinskaja GN (2010) Illustrated keys to free-living invertebrates of Eurasian Arctic seas and adjacent deep waters. Nemertea, Cephalorincha, Oligochaeta, Hirudinea, Pogonophora, Echiura, Sipuncula, Phoronida and Brachiopoda 2, Fairbanks, Alaska, USA

  • Chernykh DV, Yusupov VI, Salomatin AS, et al. (2018) A new acoustic method for quantifying the methane bubble flux in the bottom sediments-water column system and its implementation on the example of the Laptev Sea, the Arctic Ocean. Proceedings of Tomsk Polytechnic University Engineering of geo-resources 329(11): 153–167 (in Russian)

  • Chuvilin E, Bukhanov B, Davletshina D, Grebenkin S, Istomin V (2018) Dissociation and self-preservation of gas hydrates in permafrost. Geosciences 8:431. https://doi.org/10.3390/geosciences8120431

    Article  Google Scholar 

  • Clay CS, Medwin H (1977) Acoustical oceanography: principles and applications. JohnWiley& Sons, New York

    Google Scholar 

  • Cramer B, Franke D (2005) Indications for an active petroleum system in the Laptev Sea, NE Siberia. Journal of Petroleum Geology 28(4):1–15

    Article  Google Scholar 

  • Dando PR (2010) Biological communities at marine shallow-water vent and seep sites. In: S. Kiel (ed) The vent and seep biota, Springer, pp 333-378

  • Dickens GR (2001) The potential volume of oceanic methane hydrates with variable external conditions. Organic Geochemistry 32(10):1179–1193. https://doi.org/10.1016/S0146-6380(01)00086-9

    Article  Google Scholar 

  • Dmitrenko IA, Kirillov SA, Tremblay B, Kassens H, Anisimov OA, Lavrov SA, Razumov SO, Grigoriev MN (2011) Recent changes in shelf hydrography in the Siberian Arctic: potential for subsea permafrost instability. Journal of Geophysical Research 116:C10027. https://doi.org/10.1029/2011JC007218

    Article  Google Scholar 

  • Dmitrievskii NN, Ananev RA, Meluzov AA et al (2014) Geological-acoustic studies in the Laptev Sea during the voyage of the Vladimir Buinitskii. Oceanology 54(1):116–119. https://doi.org/10.1134/S0001437014010020 (in Russian)

    Article  Google Scholar 

  • Drachev SS (2000) Tectonics of the rift system of the Laptev Sea bottom. Geotektonika 6:43–56 (in Russian)

  • Drachev SS (2002) On the tectonics of the Laptev Sea shelf bed. Geotectonika 6:55–70 (in Russian)

  • Dryushchitz VA, Sadchikova TA, Skolotneva TC (2011) Gas hydrates on land and shelf of the Arctic and environment changes in the quarter. Bulletin of the commission of Quaternary period investigations 71:124–134 (In Russian)

  • Eleftheriou A, McIntyre A (2005) Methods for the study of marine benthos, 3rd edn. Blackwell Science, Oxford

    Book  Google Scholar 

  • Flint MV, Arashkevich EG, Artemiev VA, et al (2018) Ecosystems of the Siberian Arctic Seas. SIORAS – APR, Moscow (in Russian)

  • Flint MV, Poyarkov SG, Rimsky-Korsakov NA, Miroshnikov AYu (2019) Ecosystems of Siberian Arctic Seas – 2018 (72-th cruise of research vessel “Akademik Mstislav Keldish”) Oceanology 59:3. 510-512 (in Russian)

  • Franke D, Hinz K, Oncken O (2001) The Laptev Sea Rift. Marine and Petroleum Geology 18:1083–1127

    Article  Google Scholar 

  • Gebruk AV, Krylova EM, Lein AY, Vinogradov GM, Anderson E, Pimenov NV, Crane K (2003) Methane seep community of the Håkon Mosby mud volcano (the Norwegian Sea): composition and trophic aspects. Sarsia 88(6):394–403

    Article  Google Scholar 

  • Gramberg IS, Demenitskaya RM, Sekretov SB (1990) System of rift-related grabens of the Laptev Sea shelf as the missing link of rift belt Gakkel Ringe–Moma rift. Doklady AN SSSR 311(3): 325–329 (in Russian)

  • Gusev YeA, Sayonchek AB, Mennis MB et al (2002) Near Laptev Sea termination of the Gakkel ridge. In: Geology and geophysical characteristics of the Arctic region lithosphere. VNIIOkeangeologiya, Saint-Petersburg, pp 40–54 (in Russian)

  • Hinz K, Delisle G, Block M (1998) Seismic evidence for the depth extent of permafrost in shelf sediments of the Laptev Sea, Russian Arctic? PERMAFROST – Seventh International Conference (Proceedings), Yellowknife (Canada), Collection Nordicana, 55: 453-457

  • Hughes PD, Gibbard P, Ehlers J (2013) Timing of glaciation during the last glacial cycle: evaluating the concept of a global ‘Last Glacial Maximum’ (LGM). Earth-Science Reviews 125:171–198

    Article  Google Scholar 

  • Hunter S, Goldobin D, Haywood A, Ridgwell A, Rees J (2013) Sensitivity of the global submarine hydrate inventory to scenarios of future climate change. Earth Planet Sc Lett 367:105–115

    Article  Google Scholar 

  • Jakobsson M et al (2012) The International Bathymetric Chart of the Arctic Ocean (IBCAO) version 3.0. Geophys Res Lett 39: L12609. https://doi.org/10.1029/2012GL052219

  • James RH, Bousquet P, Bussmann I, Haeckel M, Kipfer R, Leifer I, Niemann H, Ostrovsky I, Piskozub J, Rehder G, Treude T, Vielstädte L, Greinert J (2016) Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: a review. Limnology and Oceanography 61:S283–S299

    Article  Google Scholar 

  • Judd A Hovland M (2007) Seabed fluid flow. The impact on geology, biology, and the marine environment. Cambridge University Press

  • Kim BI, Evdokimova NK, Kharitonova LY, Ivanova NM, Polishchuk LA (2011) Sediment cover of the Laptev Sea shelf and its oil and gas potential. Geologiya nefti i gasa (Oil and gas geology) 6:116–131 (in Russian)

    Google Scholar 

  • Kvenvolden KA (1988) Methane hydrates and global climate. Global Biogeochemical Cycles 2:221–229. https://doi.org/10.1029/GB002i003p00221

    Article  Google Scholar 

  • Mau S, Römer M, Torres ME, Bussmann I, Pape T, Damm E, Geprägs P, Wintersteller P, Hsu CW, Loher M, Bohrmann G (2017) Widespread methane seepage along the continental margin off Svalbard - from Bjørnøya to Kongsfjorden. Scientific Reports 7:42997. https://doi.org/10.1038/srep42997

    Article  Google Scholar 

  • McCune, B., Grace, J.B., Urban, D.L (2002) Analysis of ecological communities. Vol M Software Design: 28 Gleneden Beach Oregon

  • Miller CM, Dickens GR, Jakobsson M, Johansson C, Koshurnikov A, O’Regan M, Muschitiello F, Stranne C, Morth C-M (2017) Pore water geochemistry along continental slopes north of the East Siberian Sea: inference of low methane concentrations. Biogeosciences 14:2929–2953. https://doi.org/10.5194/bg-14-2929-2017

    Article  Google Scholar 

  • Niessen F, Gierlichs A, Weigelt E, Jokat W (1999) High-resolution seismic and sediment echosounding investigation of submarine permafrost on the Laptev Sea shelf. Terra Nostra 99/11. Fifth Workshop on Russian-German Cooperation: Laptev Sea System 2000. Abstracts. AARI

  • Nicolsky DY, Romanovsky VE, Romanovskii NN, Kholodov AL, Shakhova NE, Semiletov IP (2012) Modeling sub-sea permafrost in the East Siberian Arctic shelf: the Laptev Sea region. Journal of Geophysical Research 117:F03028. https://doi.org/10.1029/2012JF002358

    Article  Google Scholar 

  • Nikolovska AH, Sahling H, Bohrmann (2008) Hydroacoustic methodology for detection, localization, and quatification of gas bubbles rising from the seafloor at gas seeps from the eastern Black Sea. Geochem Geophys Geosys 9:Q10010. https://doi.org/10.1029/2008GC002118

    Article  Google Scholar 

  • Nisbet E (1989) Some northern sources of atmospheric methane: production, history, and future implications. Canadian Journal of Earth Sciences 26:1603–1611. https://doi.org/10.1139/e89-136

    Article  Google Scholar 

  • Overduin PP; Hybberten H-W, Rachold V, Romanovskii N, Grigoriev M, Kasymskaya M (2007) The evolution and degradation of coastal and offshore permafrost in the Laptev and East Siberian Seas during the last climate cycle. In: Har J, Hay WW, Tetzla DM (eds) Coastline changes: interrelation of climate and geological processes, Geological Society of America Special Paper, Geological Society of America, Boulder CO USA, pp 97–111

  • Patyk-Kara NG, Dryushchitz VA (2009) Dynamics character of the sediments in Arctic shelf in Late Cenozoic. Geologiya polyarnikh oblasteii Zemli (Geology of the Earth polar regions) 2: 101–104 (in Russian)

  • Piskarev AL (2016) Arctic basin (geology and morphology). VNIIOkeangeologiya, Saint-Petersburg. ISBN 978-5-02-039704-0 (in Russian)

  • Plaza-Faverola A, Keiding M (2019) Correlation between tectonic stress regimes and methane seepage on the western Svalbard margin. Solid Earth 10:79–94. https://doi.org/10.5194/se-10-79-2019

    Article  Google Scholar 

  • Polyakova ID, Borukaev GCh (2015) Forecast of petroleum potential of the Laptev Sea shelf. Neftegasovaâ geologiâ. Teoriâ i practica (Oil and gas geology. Theory and practice) 10(1): 1–18. https://doi.org/10.17353/2070-5379/9 (in Russian)

  • Rachold V, Bolshiyanov D, Grogoriev M et al (2007) What control the distribution and state of subsea permafrost? EOS 88(13/27):149–151

    Article  Google Scholar 

  • Reagan MT, Moridis GJ (2007) Oceanic gas hydrate instability and dissociation under climate change scenarios. Geophysical Research Letters 34:L22709. https://doi.org/10.1029/2007GL031671

    Article  Google Scholar 

  • Reagan MT, Moridis GJ (2009) Large-scale simulation of methane hydrate dissociation along the West Spitsbergen Margin. Geophysical Research Letters 36:L23612. https://doi.org/10.1029/2009GL041332

    Article  Google Scholar 

  • Rekant PV, Gusev YeA (2009) Evidence of recent tectonic movements on the Laptev Sea continental margin based on seismoacoustic profiling data. Problemy Arktiki i Antarktiki (Problems of the Arctic and Antarctic) 2(82): 85–94 (in Russian)

  • Rekant PV, Tumskii VE, Gusev EA et al (2009) Distribution and feature bedding of the submarine permafrost in the area of Semenovskaya and Vasilievskaya banks (Laptev Sea) according to the data of seismoacoustic profiling. In: Kassens H. et al (eds) System of the Laptev Sea and the adjacent Arctic Seas. Modern and Past Environments, University Press, Moscow, pp 332–338 (in Russian)

  • Romanovskii NN, Hubberten H-W, Gavrilov AV, Eliseeva AA, Tipenko GS (2005) Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas. Geo-Mar Lett 25:167–182. https://doi.org/10.1007/s00367-004-0198-6

    Article  Google Scholar 

  • Romanovskii NN, Eliseeva AA, Gavrilov AV, Tipenko GS, Hubberten HW (2006) The long-term dynamics of the permafrost and gas hydrate stability zone on rifts of the East Siberian Arctic shelf (Report 2) Kriosphera Zemli (Cryosphere of the Earth) Х(1): 29–38 (in Russian)

  • Screen JA, Simmonds I (2010) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464:1334–1337

    Article  Google Scholar 

  • Sen A, Duperron S, Hourdez S, Piquet B, Léger N, Gebruk A, Leport A-S, Svenning MM, Andersen AC (2018a) Cryptic frenulates with variable symbiont populations are the dominant chemosynthetic fauna at North Atlantic and Arctic cold seeps. PLoS One 13(12):e0209273. https://doi.org/10.1371/journal.pone.0209273

    Article  Google Scholar 

  • Sen A, Åström EKL, Hong W-L, Portnov A, Waage M, Pavel Serov P, Carroll ML ML, Carroll JL (2018b) Geophysical and geochemical controls on the megafaunal community of a high Arctic cold seep. Biogeosciences. 15:4533–4559. https://doi.org/10.5194/bg-2017-540

    Article  Google Scholar 

  • Sergienko VI, Lobkovskii LI, Semiletov IP, Dudarev OV, Dmitrievskii NN, Shakhova NE, Romanovskii NN, Kosmach DA, Nikol’skii DN, Nikiforov SL, Salomatin AS, Anan’ev RA, Roslyakov AG, Salyuk AN, Karnaukh VV, Chernykh DB, Tumskoi VE, Yusupov VI, Kurilenko AV, Chuvilin EM, Bukhanov BA (2012) The degradation of submarine permafrost and the destruction of hydrates on the shelf of East Arctic seas as a potential cause of the methane catastrophe: some results of integrated studies in 2011. Doklady Earth Sciences 446(1):1132–1137. https://doi.org/10.1134/S1028334X12080144

    Article  Google Scholar 

  • Sahling H, Romer M, Pape T, Berges B, dos Santos FC, Boelmann J, Geprags P, Tomczyk M, Nowald N, Dimmler W, Schroedter L, Glockzin M, Bohrmann G (2014) Gas emissions at the continental margin west off Svalbard: mapping, sampling, and quantification. Biogeosciences Discussions 11:7189–7234. https://doi.org/10.5194/bgd-11-7189-2014

    Article  Google Scholar 

  • Shakhova NE (2010) Methane in the Eastern Arctic Seas. Doctor Science Thesis, Dalnauka, Vladivostok

    Google Scholar 

  • Shakhova N, Sergienko V, Semiletov I (2009) The contribution of the East Siberian shelf to the modern methane cycle. Izvestiya Rossiiskoii Academii Nauk (Proceeding of the Russian Academy of Sciences) 79(3):237–246

    Google Scholar 

  • Shakhova N, Semiletov I, Salyuk A, Yusupov V, Kosmach D, Gustafsson O (2010) Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic shelf. Science 327:1246–1250

    Article  Google Scholar 

  • Shakhova N, Semiletov I, Sergienko V, Lobkovsky L, Yusupov V, Salyuk A, Salomatin A, Chernykh D, Kosmach D, Panteleev G, Nicolsky D, Samarkin V, Joye S, Charkin A, Dudarev O, Meluzov A, Gustafsson O (2015) The East Siberian Arctic shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice. Phil Trans R Soc A 373:20140451. https://doi.org/10.1098/rsta.2014.0451

    Article  Google Scholar 

  • Shakhova N, Semiletov I, Gustafsson O, Sergienko V, Lobkovsky L, Dudarev O, Tumskoy V, Grigoriev M, Mazurov A, Salyuk A, Ananiev R, Koshurnikov A, Kosmach D, Charkin A, Dmitrevsky N, Karnaukh V, Gunar A, Meluzov A, Chernykh D (2017) Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic shelf. Nature Communications 8. https://doi.org/10.1038/ncomms15872

  • Shakhova N, Igor Semiletov I, Chuvilin E (2019) Understanding the permafrost–hydrate system and associated methane releases in the East Siberian Arctic shelf. Geosciences 9:251. https://doi.org/10.3390/geosciences9060251

    Article  Google Scholar 

  • Shkarubo SI, Zavarzina GA, Zuyikova ON (2014) The results of recent stage of the Laptev Sea shelf investigation: from hypotheses to new facts and problems. Razvedka i okhrana nedr (Exploration and protection of mineral resources) 4:23–30 (in Russian)

  • Shipilov EV (2004) Tectono-geodynamic evolution of the Arctic continental margins during epochs of young ocean formation. Geotektonika 5:26–52

    Google Scholar 

  • Shipilov EV, Lobkovskii LI, Shkarubo SI (2019) Khatanga-Lomonosov fracture zone: structure, tectonic position, geodynamics. Nauchnye issledovaniya v Arktike. Scientific researches in the Arctic 3:47–61. https://doi.org/10.25283/2223-4594-2019-3-47-61 (in Russian)

    Article  Google Scholar 

  • Sirenko BI (2001) List of species of free-living invertebrates of Eurasian Arctic seas and adjacent deep waters. Explorations of the fauna of the seas 51(59):5–131

    Google Scholar 

  • Smirnov RV (2000) Two new species of Pogonophora from the arctic mud volcano off northwestern Norway. Sarsia 85(2):141–150

    Article  Google Scholar 

  • Soloviev VA, Ginzburg GD, Telepnev EV, Mikhaluk YN (1987) Cryothermia of gas hydrates in the Arctic Ocean. Saint Petersburg, Russia. VNIIOkeangeologia. Leningrad: 151 (in Russian)

  • Stranne C, O’Regan M, Dickens GR, Crill P, Miller C, Preto P, Jakobsson M (2016) Dynamic simulations of potential methane release from East Siberian continental slope sediments. Geochemistry, Geophysics, Geosystems 17:872–886. https://doi.org/10.1002/2015GC006119

    Article  Google Scholar 

  • Sweetman AK, Levin L, Rapp HT, Schander C (2013) Faunal trophic structure at hydrothermal vents on the southern Mohn’s Ridge, Arctic Ocean. Marine Ecology Progress Series 473:115–131

    Article  Google Scholar 

  • Thatcher KE, Westbrook GK, Sarkar S, Minshull TA (2013) Methane release from warming-induced hydrate dissociation in the West Svalbard continental margin: timing, rates, and geological controls. Journal of Geophysical Research - Solid Earth 118:22–38. https://doi.org/10.1029/2012JB009605

    Article  Google Scholar 

  • Thornton BF, Geibel MC, Crill PM, Humborg C, Mörth C-M (2016) Methane fluxes from the sea to the atmosphere across the Siberian shelf seas. Geophysical Research Letters 43:5869–5877. https://doi.org/10.1002/2016GL068977

    Article  Google Scholar 

  • Wallmann K, Riedel M, Hong WL, Patton H, Hubbard A, Pape T, Hsu CW, Schmidt C, Johnson JE, Torres ME, Andreassen K, Berndt C, Bohrmann G (2018) Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming. Nature Communications 9:83. https://doi.org/10.1038/s41467-017-02550-9

    Article  Google Scholar 

  • Westbrook GK, Thatcher KE, Rohling EJ, et al (2009) Escape of methane gas from the seabed along the West Spitsbergen continental margin. Geophysical Research Letters 36: L15608. https://doi.org/10.1029/2009GL039191

  • Yershov ED, Lebedenko YP, Chuvilin EM, Istomin VA, Yakushev VS (1991) Features of gas hydrate occurrence in permafrost. USSR Acad Sci 321: 788–791 (in Russian)

  • Yusupov VI, Salyuk AN, Karnaukh VN, Semiletov IP, Shakhova NE (2010) Detection of methane emission in shelf waters of the Laptev Sea in the Eastern Arctic Region. Doklady Academii Nauk 430(2):261–264. https://doi.org/10.1134/S1028334X1002025X

    Article  Google Scholar 

Download references

Acknowledgments

Reviews by guest editors and four anonymous reviewers significantly improve the manuscript.

Funding

Field studies were carried out with the support of the state budget (financing of marine expeditions) and the Russian Science Foundation No. 14–50–00095. The processing and interpretation of data were in part funded by the Russian Foundation of Basic Researches, project 18–05–60228, and the state assignment of the Institute of Oceanology Russian Academy of Sciences, theme No. 0149–2019–0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Baranov.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranov, B., Galkin, S., Vedenin, A. et al. Methane seeps on the outer shelf of the Laptev Sea: characteristic features, structural control, and benthic fauna. Geo-Mar Lett 40, 541–557 (2020). https://doi.org/10.1007/s00367-020-00655-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-020-00655-7

Keywords

Navigation