Geomorphometric comparison of submarine channel-levee complexes with fluvial river systems: observations from the Indus

Abstract

An analogy between submarine channels and fluvial rivers has existed for long, especially on the basis of planform and morphometry. Underlying this broad resemblance are the minute disparities that shape and control these systems. In order to observe and quantify the variations between submarine channels and subaerial rivers, we present a first-ever geomorphometric investigation of one single system, where the fluvial river is compared with its offshore counterpart from source-to-sink. With exhaustive data from the submarine fan, parameters like longitudinal profile, width, sinuosity, slope and planform of the Indus Fan channel-levee complex (CLC) are estimated and compared on the basis of the same parameters estimated for the fluvial Indus River. Our new data analyses offers key insights into the variable geomorphometric patterns prevalent from the source of the Indus River until the margins of the submarine Indus Fan. Channel width and sinuosity vary from high-to-low downstream in the submarine system and from low to high in the fluvial basin. Characteristic depositional features of either system are mutually exclusive. Longitudinal profiles of the submarine fan and the river basin do not conform—principally due to the difference in intensity of erosional and depositional processes active in both regions. These differences are primarily attributed to a single-point (canyon-fed) distributary flow and a multi-point (tributary-fed) cumulative flow source system, and density contrasts between river flows and turbidity currents. By quantifying this variation, our attempt is to dissuade the long-standing morphometric analogy between fluvial rivers and submarine channels.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Afzal J, Williams M, Aldridge RJ (2009) Revised stratigraphy of the lower Cenozoic succession of the greater Indus Basin in Pakistan. J Micropalaeontol 28(1):7–23. https://doi.org/10.1144/jm.28.1.7

    Article  Google Scholar 

  2. Ahmed MF (2013) A regional study of landslide hazards and related features in the upper Indus River Basin, northern Pakistan. Doctoral Dissertations. Paper 2109. http://scholarsmine.mst.edu/doctoral_dissertations/2109

  3. Amir A, Kenyon NH, Cramp A, Kidd RB (1996) Morphology of channel-levee systems on the Indus deep-sea fan, Arabian Sea. Pakistan J Hydrocarbon Res 8(1):43–53 https://pjhr.org.pk/index.php/pjhr/article/download/97/89/

    Google Scholar 

  4. Asim S, Qureshi S, Asif S, Abbasi S, Solangi S, Mirza M (2014) Structural and stratigraphical correlation of seismic profiles between Drigri Anticline and Bahawalpur High in Central Indus Basin of Pakistan. Int J Geosci 5(11):1231–1240. https://doi.org/10.4236/ijg.2014.511102

    Article  Google Scholar 

  5. Babonneau N, Savoye B, Cremer M, Klein B (2002) Morphology and architecture of the present canyon and channel system of the Zaire deep-sea fan. Mar Pet Geol 19(4):445–467. https://doi.org/10.1016/S0264-8172(02)00009-0

    Article  Google Scholar 

  6. Berlin TL (2014) Channel-levee complexes and sediment flux of the upper Indus Fan. LSU Master's Theses. 1236. https://digitalcommons.lsu.edu/gradschool_theses/1236

  7. Bouma AH, Stelting CE, Coleman JM (1985) Mississippi Fan: Gulf of Mexico. In: Bouma AH, Normark WR, Barnes NE (eds) Submarine fans and related turbidite systems: frontiers in sedimentary geology. Springer, New York, pp 143–150. https://doi.org/10.1007/978-1-4612-5114-9_21

    Google Scholar 

  8. Bourget J, Zaragosi S, Rodriguez M, Fournier M, Garlan T, Chamot-Rooke N (2013) Late Quaternary megaturbidites of the Indus fan: origin and stratigraphic significance. Mar Geol 336:10–23. https://doi.org/10.1016/j.margeo.2012.11.011

    Article  Google Scholar 

  9. Brice JC (1974) Evolution of meander loops. In: Kolla V, Bourges P, Urruty J-M, Safa P (2001) evolution of deep-water sinuous channels offshore Angola (West Africa) and implications for reservoir architecture. American Association of Petroleum Geologists Bulletin 85, pp 1373–1405. https://doi.org/10.1306/8626CAC3-173B-11D7-8645000102C1865D

  10. CartoDEM v-3 R1 (2015) NRSC open EO data archive (NOEDA). Hyderabad: National Remote Sensing Centre. http://bhuvan.nrsc.gov.in/data/download/index.php

  11. Chen L, Khan S (2010) InSAR observation of the strike-slip faults in the northwest Himalayan frontal thrust system. Geosphere. 6(5):731–736. https://doi.org/10.1130/GES00518.1

    Article  Google Scholar 

  12. Clark JD, Kenyon NH, Pickering KT (1992) Quantitative analysis of the geometry of submarine channels: implications for the classification of submarine fans. Geology. 20(7):633–636. https://doi.org/10.1130/0091-7613(1992)020<0633:QAOTGO>2.3.CO;2

    Article  Google Scholar 

  13. Clift PD (2017) Cenozoic sedimentary records of climate-tectonic coupling in the Western Himalaya. Prog Earth Planet Sci 4:39–22. https://doi.org/10.1186/s40645-017-0151-8

    Article  Google Scholar 

  14. Clift PD, Henstock TJ (2015) Kongsberg EM302 processed bathymetry data, Indus Canyon and shelf, Pelagia cruise PE300 (year 2008-2009, investigators Peter Clift and Tim Henstock). Interdisciplinary Earth Data Alliance (IEDA). http://get.iedadata.org/doi/321848

  15. Clift PD, Gaedicke C, Edwards R, Lee JI, Hildebrand P, Amjad S, White RS, Schlüter H-U (2002) The stratigraphic evolution of the Indus fan and the history of sedimentation in the Arabian Sea. Mar Geophys Res 23(3):223–245. https://doi.org/10.1023/A:1023627123093

    Article  Google Scholar 

  16. Clift PD, Giosan L, Henstock TJ, Tabrez AR (2014) Sediment storage and reworking on the shelf and in the canyon of the Indus River-Fan System since the last glacial maximum. Basin Res 26:183–202. https://doi.org/10.1111/bre.12041

    Article  Google Scholar 

  17. Corney RKT, Peakall J, Parsons DR, Elliott L, Amos KJ, Best JL, Keevil GM, Ingham DB (2006) The orientation of helical flow in curved channels. Sedimentology 53:249–257. https://doi.org/10.1111/j.1365-3091.2006.00771.x

    Article  Google Scholar 

  18. Damuth JE, Flood RD (1985) Amazon fan, Atlantic Ocean. In: Bouma AH, Normark WR, Barnes NE (eds) Submarine fans and related Turbidite systems: frontiers in sedimentary geology. Springer, New York, pp 97–106. https://doi.org/10.1007/978-1-4612-5114-9_15

    Google Scholar 

  19. Darby SE, Peakall J (2012) Modelling the equilibrium bed topography of submarine meanders that exhibit reversed secondary flows. Geomorphology 163-164:99–109. https://doi.org/10.1016/j.geomorph.2011.04.050

    Article  Google Scholar 

  20. Deptuck ME, Sylvester Z (2018) Submarine fans and their channels, levees, and lobes. In: Micallef A, Krastel S, Savini A (eds) . Submarine Geomorphology, Springer Geology, pp 273–299. https://doi.org/10.1007/978-3-319-57852-1_15

    Google Scholar 

  21. Deptuck ME, Steffens GS, Barton M, Pirmez C (2003) Architecture and evolution of Upper Indus Fan channel-belts on the Niger Delta slope and in the Arabian Sea. Mar Pet Geol 20(6–8):649–676. https://doi.org/10.1016/j.marpetgeo.2003.01.004

    Article  Google Scholar 

  22. Flood RD, Damuth JE (1987) Quantitative characteristics of sinuous distributary channels on the Amazon Deep-sea Fan. Geol Soc Am Bull 98(6):728–738. https://doi.org/10.1130/0016-7606(1987)98<728:QCOSDC>2.0.CO;2

    Article  Google Scholar 

  23. Florinsky IV (2017) An illustrated introduction to general geomorphometry. Prog Phys Geogr 41(6):723–752. https://doi.org/10.1177/0309133317733667

    Article  Google Scholar 

  24. Foreman BZ, Lai SYJ, Komatsu Y, Paola C (2015) Braiding of submarine channels controlled by aspect ratio similar to river. Nat Geosci 8:700–703. https://doi.org/10.1038/ngeo2505

    Article  Google Scholar 

  25. Giosan L, Constantinescu S, Clift PD, Tabrez AR, Danish M, Inam A (2006) Recent morphodynamics of the Indus delta shore and shelf. Cont Shelf Res 26(14):1668–1684. https://doi.org/10.1016/j.csr.2006.05.009

    Article  Google Scholar 

  26. Govil P, Naidu PD (2008) Late Quaternary changes in depositional processes along the western margin of the Indus Fan. Geo-Mar Lett 28(1):1–6. https://doi.org/10.1007/s00367-007-0083-1

    Article  Google Scholar 

  27. Hansen L, Janocko M, Kane I, Kneller B (2017) Submarine channel evolution, terrace development, and preservation of intra-channel thin-bedded turbidites: Mahin and Avon channels, offshore Nigeria. Mar Geol 383(1):146–167. https://doi.org/10.1016/j.margeo.2016.11.011

    Article  Google Scholar 

  28. Imran J, Parker G, Pirmez C (1999) A nonlinear model of flow in meandering submarine and subaerial channels. J Fluid Mech 400:295–331. https://doi.org/10.1017/S0022112099006515

    Article  Google Scholar 

  29. Inam A, Clift PD, Giosan L, Tabrez AR, Tahir M, Rabbani MM, Danish M (2008) The geographic, geological and oceanographic setting of the Indus River. In: Gupta A (ed) Large rivers: geomorphology and management. Wiley, Chichester, pp 333–346. https://doi.org/10.1002/9780470723722.ch16

    Google Scholar 

  30. Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled SRTM for the globe Version 4. CGIAR-CSI SRTM 90 m Database. http://srtm.csi.cgiar.org

  31. Jobe ZR, Howes NC, Auchter N (2016) Comparing submarine and fluvial channel kinematics: implications for stratigraphic architecture. Geology 44(11):931–934. https://doi.org/10.1130/G38158.1

    Article  Google Scholar 

  32. Kane IA, McCaffrey WD, Peakall J (2008) Controls on sinuosity evolution within submarine channels. Geology 36(4):287–290. https://doi.org/10.1130/G24588A.1

    Article  Google Scholar 

  33. Kazmi AH, Jan MQ (1997) Geology and tectonics of Pakistan. Graphic Publishers. ISBN: 9698375007, 9789698375003

  34. Keevil GM, Peakall J, Best JL, Amos KJ (2006) Flow structure in sinuous submarine channels: velocity and turbulence structure of an experimental submarine channel. Mar Geol 229(3–4):241–257. https://doi.org/10.1016/j.margeo.2006.03.010

    Article  Google Scholar 

  35. Kenyon NH, Amir A, Bishop DG, Booth DG, Campbell JM, Danish M, Davies MA, Hunter PM, Miles PR, Phipps RA, Robinson AD, Rothwell RG (1987) GLORIA study of the Indus Fan, RRS Charles Darwin Cruise 20, 31 January - 27 February 1987. Institute of Oceanographic Sciences, Deacon Laboratory, Cruise Report, No. 198, pp 17

  36. Kenyon NH, Amir A, Cramp A (1995) Geometry of the younger sediment bodies of the Indus Fan. In: Pickering KT, Hiscott RN, Kenyon NH, Lucchi FR, Smith RDA (eds) Atlas of deep-water environments: architectural style in turbidite systems. Chapman and Hall, London, pp 89–93. https://doi.org/10.1007/978-94-011-1234-5

    Google Scholar 

  37. Khan IH, Clyde WC (2013) Lower Paleogene tectonostratigraphy of Balochistan: evidence for time-transgressive Late Paleocene-Early Eocene uplift. Geosci 3(3):466–501. https://doi.org/10.3390/geosciences3030466

    Article  Google Scholar 

  38. Khim B-K, Horikawa K, Asahara Y, Kim J-E, Ikehara M (2018) Detrital Sr-Nd isotopes, sediment provenances and depositional processes in the Laxmi Basin of the Arabian Sea during the last 800 ka. Geol Mag 1–13. https://doi.org/10.1017/S0016756818000596

  39. Kodagali VN, Jauhari P (1999) The meandering Indus channels: study in a small area by the multibeam swath bathymetry system-Hydrosweep. Curr Sci 76(2):240–243 http://drs.nio.org/drs/handle/2264/1777

    Google Scholar 

  40. Kolla V (2007) A review of sinuous channel avulsion patterns in some major deep-sea fans and factors controlling them. Mar Pet Geol 24(6–9):450–469. https://doi.org/10.1016/j.marpetgeo.2007.01.004

    Article  Google Scholar 

  41. Kolla V, Coumes F (1987) Morphology, internal structure, seismic stratigraphy, and sedimentation of Indus Fan. Am Assoc Pet Geol Bull 71(6):650–677 OSTI ID: 5783289

    Google Scholar 

  42. Kolla V, Bourges P, Urruty J-M, Safa P (2001) Evolution of deep-water sinuous channels offshore Angola (West Africa) and implications for reservoir architecture. Am Assoc Pet Geol Bull 85:1373–1405. https://doi.org/10.1306/8626CAC3-173B-11D7-8645000102C1865D

    Article  Google Scholar 

  43. Kolla V, Posamentier HW, Wood LJ (2007) Deep-water and fluvial sinuous channels—characteristics, similarities and dissimilarities, and modes of formation. Mar Pet Geol 24(6–9):388–405. https://doi.org/10.1016/j.marpetgeo.2007.01.007

    Article  Google Scholar 

  44. Konsoer K, Zinger J, Parker G (2013) Bankfull hydraulic geometry of submarine channels created by turbidity currents: relations between bankfull channel characteristics and formative flow discharge. J Geophys Res Earth Surf 118(1):216–228. https://doi.org/10.1029/2012JF002422

    Article  Google Scholar 

  45. Kumar A, Srivastava P (2018) Landscape of the Indus River In: The Indian Rivers, Singh D (ed) Springer Hydrogeology, pp 47-59. https://doi.org/10.1007/978-981-10-2984-4_4

  46. Lajeunesse E, Malverti L, Lancien P, Armstrong L, Métivier F, Coleman S, ..., Parker G (2010) Fluvial and submarine morphodynamics of laminar and near-laminar flows: a synthesis. Sedimentology 57:1–26. https://doi.org/10.1111/j.1365-3091.2009.01109.x

  47. Leopold LB, Wolman MG (1960) River Meanders. Geol Soc Am Bull 71(6):769–793. https://doi.org/10.1130/0016-7606(1960)71[769:RM]2.0.CO;2

    Article  Google Scholar 

  48. Makaske B (2001) Anastomosing rivers: a review of their classification, origin and sedimentary products. Earth-Sci Rev 53(3–4):149–196. https://doi.org/10.1016/S0012-8252(00)00038-6

    Article  Google Scholar 

  49. McDougall JW, Khan SH (1990) Strike-slip faulting in a foreland foldthrust belt: the Kalabagh fault and western salt range, Pakistan. Tectonics 9(5):1061–1075. https://doi.org/10.1029/TC009i005p01061

    Article  Google Scholar 

  50. McHargue TR, Webb JE (1986) Internal geometry, seismic facies, and petroleum potential of canyons and inner fan channels of the Indus submarine fan. Am Assoc Pet Geol Bull (2):70, 61–180 OSTI ID: 6968606

  51. McHargue TR, Pyrcz MJ, Sullivan MD, Clark JD, Fildani A, Romans BW, Covault JA, Levy M, Posamentier HW, Drinkwater NJ (2011) Architecture of turbidite channel systems on the continental slope: patterns and predictions. Mar Pet Geol 28(3):728–743. ISSN 0264-8172. https://doi.org/10.1016/j.marpetgeo.2010.07.008

    Article  Google Scholar 

  52. Miall AD (2002) Architecture and sequence stratigraphy of Pleistocene fluvial systems in the Malay Basin, based on seismic time-slice analysis. Am Assoc Pet Geol Bull 86(7):1201–1216. https://doi.org/10.1306/61EEDC56-173E-11D7-8645000102C1865D

    Article  Google Scholar 

  53. Middleton GV (1993) Sediment deposition from turbidity currents. Annu Rev Earth Planet Sci 21:89–114. https://doi.org/10.1146/annurev.ea.21.050193.000513

    Article  Google Scholar 

  54. Mishra R, Pandey DK, Prerna R (2015) Active channel systems in the middle Indus Fan: results from high-resolution bathymetry surveys. Curr Sci 108(3):409–412

    Google Scholar 

  55. Mukherjee S (2015) A review on out-of-sequence deformation in the Himalayas. In: Mukherjee S, Carosi R, van der Beek P, Mukherjee BK, Robinson DM (eds) Tectonics of the Himalaya. Geological Society, London, Special Publications (Vol 412). London, UK: The Geological Society. 67–109. https://doi.org/10.1144/SP412.13

  56. Murphy MA, Yin A, Kapp P, Harrison TM, Lin D, Guo J (2000) Southward propagation of the Karakoram fault system, southwest Tibet: timing and magnitude of slip. Geology 28(5):451–454. https://doi.org/10.1130/0091-7613(2000)28<451:SPOTKF>2.0.CO;2

    Article  Google Scholar 

  57. Naini BR, Kolla V (1982) Acoustic character and thickness of sediments of the Indus Fan and the continental margin of western India. Mar Geol 47(3–4):181–195. https://doi.org/10.1016/0025-3227(82)90068-8

    Article  Google Scholar 

  58. NCPOR (n.d.) Processed bathymetric data. Survey of the EEZ.

  59. Peakall J, Sumner EJ (2015) Submarine channel flow processes and deposits: a process-product perspective. Geomorphology 244:95–120. https://doi.org/10.1016/j.geomorph.2015.03.005

    Article  Google Scholar 

  60. Peakall J, McCaffrey B, Kneller B (2000) A process model for the evolution, morphology, and architecture of sinuous submarine channels. J Sediment Res 70(3):434–448. https://doi.org/10.1306/2DC4091C-0E47-11D7-8643000102C1865D

    Article  Google Scholar 

  61. Pickering KT, Clark JD, Smith RDA, Hiscott RN, Ricci Lucchi F, Kenyon N (1995) Architectural element analysis of turbidite systems, and selected topical problems for sand-prone deep-water systems. In: Pickering KT, Hiscott RN, Kenyon NH, Lucchi FR, Smith RDA (eds) Atlas of deep-water environments: architectural style in turbidite systems. Chapman and Hall, London, pp 1–11. https://doi.org/10.1007/978-94-011-1234-5_1

    Google Scholar 

  62. Pike RJ (1995) Geomorphometry-diversity in quantitative surface analysis. Prog Phys Geogr 24(1):1–20. https://doi.org/10.1177/030913330002400101

    Article  Google Scholar 

  63. Pike RJ, Evans IS, Hengl T (2009) Geomorphometry: a brief guide. In: Hengl T, Reuter H-I (eds) Developments in Soil Science, volume 33. Elsevier, pp 3–30

  64. Pirmez C, Flood RD (1995) Morphology and structure of Amazon Channel. Proceedings of the Ocean Drilling Program, Initial Report, 155, Chapter 3, pp 23-45. https://doi.org/10.2973/odp.proc.ir.155.103.1995

  65. Posamentier HW (2003) Depositional elements associated with a basin floor channel-levee system: case study from the Gulf of Mexico. Mar Pet Geol 20(6–8):677–690. https://doi.org/10.1016/j.marpetgeo.2003.01.002

    Article  Google Scholar 

  66. Prerna R, Pandey DK, Mahender K (2018) Longitudinal profiling and elevation-relief analysis of the Indus. Arab J Geosci 11:343–318. https://doi.org/10.1007/s12517-018-3657-5

    Article  Google Scholar 

  67. Prins MA, Postma G, Cleveringa J, Cramp A, Kenyon NH (2000) Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary: the Indus Fan. Mar Geol 169(3–4):327–349. https://doi.org/10.1016/S0025-3227(00)00086-4

    Article  Google Scholar 

  68. Qin Y, Alves TM, Constantine J, Gamboa D (2016) Quantitative seismic geomorphology of a submarine channel system in SE Brazil (Espírito Santo Basin): scale comparison with other submarine channel systems. Mar Pet Geol 78:455–473. https://doi.org/10.1016/j.marpetgeo.2016.09.024

    Article  Google Scholar 

  69. Schumm SA, Khan HR (1972) Experimental study of channel patterns. Geol Soc Am Bull 83(6):1755–1770. https://doi.org/10.1130/0016-7606(1972)83[1755:ESOCP]2.0.CO;2

    Article  Google Scholar 

  70. Searle MP (1996) Geological evidence against large-scale pre-Holocene offsets along the Karakoram fault: implications for the limited extrusion of the Tibetan plateau. Tectonics 15(1):171–186. https://doi.org/10.1029/95TC01693

    Article  Google Scholar 

  71. Shanmugam G, Moiola RJ (1988) Submarine fans: characteristics, models, classification, and reservoir potential. Earth Sci Rev 24(6):383–428. https://doi.org/10.1016/0012-8252(88)90064-5

    Article  Google Scholar 

  72. Shareef NM, Dinesh AC, Venkateswara R, Jayaprakash C, Rajarama KN, Varghese S, Girishbai D (2018) Evidences of shallow marine sediments as channel fill in the lower Indus Fan. Indian J Geo-Marine Sci 47:67–72 http://nopr.niscair.res.in/handle/123456789/43453

    Google Scholar 

  73. Smith WHF, Sandwell DT (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science 277(5334):1957–1962. https://doi.org/10.1126/science.277.5334.1956

    Article  Google Scholar 

  74. Stow DAV, Howell DG, Nelson CH (1985) Sedimentary, tectonic, and sea-level controls. In: Bouma AH, Normark WR, Barnes NE (eds) Submarine fans and related turbidite systems. (1st ed.). Frontiers in Sedimentary Geology. Springer, New York. https://doi.org/10.1007/978-1-4612-5114-9_4

    Google Scholar 

  75. von Rad U, Tahir M (1997) Late Quaternary sedimentation on the outer Indus shelf and slope (Pakistan): evidence from high-resolution seismic data and coring. Mar Geol 138(3–4):193–236. https://doi.org/10.1016/S0025-3227(96)00090-4

    Article  Google Scholar 

  76. Ward B (2007) Anammox and denitrification in the ODZ of the Arabian Sea. Cruise: KNOX09RR, Kongsberg EM120 multibeam sonar data. Princeton University. R/v Roger Revelle, Scripps Institution of Oceanography. Marine Geophysical Data System. https://doi.org/10.7284/903735

  77. Whitmarsh RB, Weser OE, Ali S, Boudreaux JE, Fleisher RL, Jipa D, …, Hamilton N (1974) Site 220, initial reports of the deep sea drilling project.23, pp 117-166. Publisher: Texas A&M University, Ocean Drilling Program, College Station, TX, United States. ISSN: 0080-8334. https://doi.org/10.2973/dsdp.proc.23.104.1974

  78. Winston Y, Yang Y-C, Savitsky A, Alford D, Brown C, Wescoat J, Debowicz D, Robinson S (eds) (2013) Hydrology and glaciers in the upper Indus Basin. In: the Indus Basin of Pakistan: the impacts of climate risks on water and agriculture. The World Bank, Washington DC, pp 57–75. https://doi.org/10.1596/978-0-8213-9874-6

    Google Scholar 

  79. Wynn RB, Cronin BT, Peakall J (2007) Sinuous deep-water channels: genesis, geometry and architecture. Mar Pet Geol 24(6–9):341–387. https://doi.org/10.1016/j.marpetgeo.2007.06.001

    Article  Google Scholar 

  80. Yin AN (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci Rev 76:1–131. https://doi.org/10.1016/j.earscirev.2005.05.004

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Director, NCPOR, Goa for extending continued support to carry out this research. Exclusive Economic Survey Group from NCPOR, Goa is sincerely thanked for providing MBES data from Upper Indus Fan and; Dr. Peter D Clift and Dr. Tim Henstock for permitting the use of MBES data from the Indus Canyon (accessed from Marine Geophysical Data System www.marine-geo.org) without which this research could not have been as expansive and well-constrained. Dr. Dhananjai K Pandey and Mr. Ajeet Kumar are also graciously thanked for their kind support. This is NCPOR Contribution No. J-02/2020-21.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Prerna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prerna, R., Mahender, K. Geomorphometric comparison of submarine channel-levee complexes with fluvial river systems: observations from the Indus. Geo-Mar Lett 40, 573–592 (2020). https://doi.org/10.1007/s00367-020-00654-8

Download citation

Keywords

  • Submarine channels
  • Fluvial river
  • Geomorphometric comparison
  • Indus
  • Channel-levee complex (CLC)