The role of mass transport deposits contributing to fluid escape: Neogene outcrop and seismic examples from north Taranaki, New Zealand

Abstract

Many sedimentary structures are the manifestation of fluid escape in sedimentary basins. This paper examines outcrop and seismic examples in upper Miocene deep-water sandstones and siltstones of north Taranaki, New Zealand. In outcrop examples of fluid escape features comprise discordant bodies within otherwise uniformly bedded surrounding stratigraphy, features characterized by steep sided, over-hanging, vertical or near-vertical margins, infilled with an assortment of poorly sorted or chaotically arranged sandstone and siltstone. Typically, these features are several metres wide and up to 20 m high in outcrop and always occur stratigraphically below a mass transport deposit (MTD). Examples of similar features from nearby 2D and 3D seismic reflection data consist of localized vertical to sub-vertical zones of disrupted reflectivity and are as much as 300 m in height and 10’s–100’s of metres in width. The structures occur in close association with the basal slide planes of seismic-scale MTDs. The close association of fluid escape structures with MTDs suggests that these features formed by the sudden loading of the sedimentary succession by the emplacement of several metre-thick overlying MTDs. We suggest recurring phases whereby the emplacement of MTDs triggered fluid escape within underlying strata and, in turn, the fluid escape contributed to further instability with potential for mobilization and transport of subsequent MTDs in a dynamic deep-water setting.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Agirrezabala LM, Kiel S, Blumenberg M, Schäfer N, Reitner J (2013) Outcrop analogues of pockmarks and associated methane-seep carbonates: a case study from the Lower Cretaceous (Albian) of the Basque-Canabrian Basin, western Pyrenees. Palaeogeogr Palaeoclimatol Palaeoecol 390:94–115. https://doi.org/10.1016/j.palaeo.2012.11.020

    Article  Google Scholar 

  2. Andresen KJ, Huuse M (2011) ‘Bulls-eye’ pockmarks and polygonal faulting in the lower Congo Basin: relative timing and implications for fluid expulsion during shallow burial. Mar Geol 279:111–127

    Article  Google Scholar 

  3. ARCO Petroleum NZ Inc. (1992) Arawa-1 Final Well Report PPL38436. Ministry of Commerce New Zealand, Unpublished Petroleum Report PR1824

  4. Arnot MJ, King PR, Browne GH, Helle K (2007a) Channelised innermost basin floor fan morphologies, Mount Messenger Formation, Waikiekie South Beach and inland, Taranaki Basin. In: Nilsen TH, Shew RD, Steffens GS, Sudlick JRJ (eds) Atlas of deep-water outcrops, AAPG studies in geology, vol 56, pp 249–256. https://doi.org/10.1306/1240948St563302

    Google Scholar 

  5. Arnot MJ, Browne GH, King PR (2007b) Thick-bedded sandstone facies in a mid basin floor fan setting, Mount Messenger Formation, Mohakatino Beach, Taranaki Basin. In: Nilsen TH, Shew RD, Steffens GS, Sudlick JRJ (eds) Atlas of deep-water outcrops, AAPG studies in geology, vol 56, pp 241–244. https://doi.org/10.1306/1240948St563302

    Google Scholar 

  6. Baas JH, Mienert J, Schultheiss P, Evans D (1994) Evidence of gas vents and gas hydrates in the Storegga area. In: Gas in marine sediments, 3rd International Conference. NIOZ, Texel, The Netherlands. Abstract

  7. Bertoni C, Cartwright J, Hermanrud C (2013) Evidence for large-scale methane venting due to rapid drawdown of sea level during the Messinian Salinity Crisis. Geology 41(3):371–374. https://doi.org/10.1130/G33987.1

    Article  Google Scholar 

  8. Bertoni C, Cartwright J, Foschi M, Martin J (2018) Spectrum of gas migration phenomena across multi-layered sealing sequences. AAPG Bull 102:1011–1034. https://doi.org/10.1306/0810171622617210

    Article  Google Scholar 

  9. Bland KJ, Nicol A, Kamp PJJ, Nelson CS (2018) Stratigraphic constraints on the late Miocene–Pleistocene evolution of the North Island Fault System and axial ranges in the central Hikurangi subduction margin, New Zealand. N Z J Geol Geophys 62:248–272. https://doi.org/10.1080/00288306.2018.1545675

    Article  Google Scholar 

  10. Browne GH, Slatt RM (2002) Outcrop and behind-outcrop characterization of a Late Miocene Slope Fan (Channel-Levee Complex), Mt Messenger Formation, New Zealand. AAPG Bull 86:841–862. https://doi.org/10.1306/61EEDBB6-173E-11D7-8645000102C1865D

    Article  Google Scholar 

  11. Browne GH, King PR, Higgs KE, Slatt RM (2005) Grain-size characteristics for distinguishing basin floor fan and slope fan depositional settings: outcrop and subsurface examples from the late Miocene Mount Messenger Formation, New Zealand. N Z J Geol Geophys 48:213–227. https://doi.org/10.1080/00288306.2005.9515111

    Article  Google Scholar 

  12. Browne GH, King PR, Arnot MJ, Helle K (2007) A complete mid-inner basin floor fan cycle, Mount Messenger Formation, Tongaporutu, Taranaki Basin. In: Nilsen TH, Shew RD, Steffens GS, Sudlick JRJ (eds) Atlas of deep-water outcrops, AAPG studies in geology, vol 56, pp 245–248. https://doi.org/10.1306/1240948St563302

    Google Scholar 

  13. Bull S, Cartwright J, Huuse M (2009) A review of kinematic indicators from mass transport complexes using 3D seismic data. Mar Pet Geol 26:1132–1151. https://doi.org/10.1016/j.marpetgeo.2008.09.011

    Article  Google Scholar 

  14. Bull S, Nicol A, Strogen DP, Kroeger KF, Seebeck H (2018) Tectonic controls on Miocene sedimentation in the southern Taranaki Basin and implications for New Zealand plate boundary deformation. Basin Res. https://doi.org/10.1111/bre.12319

  15. Bull S, Arnot MJ, Browne GH, Crundwell MP, Nicol A, King PR, Strachan L (2020) Neogene and Quaternary mass transport deposits from northern Taranaki: morphologies, transportation processes and depositional controls. AGU Books, Wiley, Hoboken

    Google Scholar 

  16. Carter L, Gavey R, Talling PJ, Liu JT (2014) Insights into submarine geohazards from breaks in subsea telecommunication cables. Oceanog 27:58–67. https://doi.org/10.5670/oceanog.2014.40

    Article  Google Scholar 

  17. Cartwright J (2007) The impact of 3D seismic on modelling fluid flow in sedimentary basins. J Geol Soc Lond 164:881–893

    Article  Google Scholar 

  18. Cartwright J, Santamarina C (2015) Seismic characteristics of fluid-escape pipes in sedimentary basins: implications for pipe genesis. Mar Pet Geol 65:126–140

    Article  Google Scholar 

  19. Cartwright J, Huuse M, Aplin A (2007) Seal bypass systems. AAPG Bull 91:1141–1166. https://doi.org/10.1306/04090705181

    Article  Google Scholar 

  20. Chapron E, Van Rensbergen P, De Batist M, Beck C (2004) Fluid-escape features as a precursor of a large sublacustrine sediment slide in lake Bourget, NW Alps, France. Terra Nova 16:305–311. https://doi.org/10.1111/j.1365.3121.2004.00566.x

    Article  Google Scholar 

  21. Chenrai P, Huuse M (2017) Pockmark formation by porewater expulsion during rapid progradation in the offshore Taranaki Basin, New Zealand. Mar Pet Geol 82:399–413. https://doi.org/10.1016/j.marpetgeo.2017.02.017

    Article  Google Scholar 

  22. Clari P, Cavagna S, Martire L, Hunziker J (2004) A Miocene mud volcano and its plumbing system: a chaotic complex revisited (Monferrato, NW Italy). J Sediment Res 74:662–676. https://doi.org/10.1306/022504740662

    Article  Google Scholar 

  23. Crowley J, Crocker, SJ (1989) Well completion report Okoki-1 PPL38438. Ministry of Economic Development Petroleum Report PR1495: 919p

  24. Crundwell MP (2016) A new method for interpolating ages between calibrated control points based on foraminiferal concentrations. J Sediment Res 86:438–447. https://doi.org/10.2110/jsr.2016.34

    Article  Google Scholar 

  25. Crutchley GJ, Fraser DRA, Pecher IA, Gorman AR, Maslen G, Henrys SA (2015) Gas migration into gas hydrate-bearing sediments on the southern Hikurangi margin of New Zealand. J Geophys Res Solid Earth 120:725–743. https://doi.org/10.1002/2014JB011503

    Article  Google Scholar 

  26. Dan G, Sultan N, Savoye B (2007) The 1979 Nice harbour catastrophe revisited: trigger mechanism inferred from geotechnical measurements and numerical modelling. Mar Geol 245:40–64. https://doi.org/10.1016/j.margeo.2007.06.011

    Article  Google Scholar 

  27. Dando PR, Austen MCV, Burke R, Kendall M (1991) Ecology of a North Sea pockmark with an active methane seep. Mar Ecol Prog Ser 70:49–63. https://doi.org/10.3354/meps070049

    Article  Google Scholar 

  28. Delisle G (2004) The mud volcanoes of Pakistan. Environ Geol 46:1024–1029. https://doi.org/10.1007/s00254-004-1089-x

    Article  Google Scholar 

  29. Dugan B, Flemings PB (2000) Overpressure and fluid flow in the New Jersey continental slope: implications for slope failure and cold seeps. Science 289(5477):288–291. https://doi.org/10.1126/science.289.5477.288

    Article  Google Scholar 

  30. Evans D, King EL, Kenyon NH, Brett C, Wallis D (1996) Evidence for long-term instability in the Storegga Slide region off western Norway. Mar Geol 130:281–292

    Article  Google Scholar 

  31. Frey-Martinez J, Cartwright J, James D (2006) Frontally confined versus frontally emergent submarine landslides: a 3D seismic characterisation. Mar Pet Geol 23:585–604. https://doi.org/10.1016/j/marpetgeo.2006.04.002

    Article  Google Scholar 

  32. Giba M, Walsh JJ, Nicol A, Mouslopoulou V, Seebeck H (2013) Investigation of the spatio-temporal relationship between normal faulting and arc volcanism on million-year timescales. J Geol Soc 170:951–962. https://doi.org/10.1144/jgs2012-121

    Article  Google Scholar 

  33. Gorman AR, Holbrook WS, Hornbach MJ, Hackwith KL (2002) Migration of methane gas through the hydrate stability zone in a low-flux hydrate province. Geol 30:327–330

    Article  Google Scholar 

  34. Gregory MR (1969) Sedimentary features and pencontemporaneous slumping in the Waitemata Group, Whangaparaoa Peninsula, north Auckland, New Zealand. N Z J Geol Geophys 12:248–282. https://doi.org/10.1080/00288306.1969.10420236

    Article  Google Scholar 

  35. Greinert J, Lewis KB, Bialas J, Pecher I, Rowden AA, Bowden D, De Batist MPL (2010) Methane seepage along the Hikurangi Margin, New Zealand: overview of studies in 2006 and 2007 and new evidence from visual, bathymetric and hydroacoustic investigations. Mar Geol 272:6–25. https://doi.org/10.1016/j.margeo.2010.01.017

    Article  Google Scholar 

  36. Hansen RJ (1996) Stratigraphy, sedimentology and paleomagnetism of a Late Miocene succession eastern Taranaki Basin. Unpublished MSc Thesis, University of Waikato, Hamilton, New Zealand

  37. Hansen RJ, Kamp PJJ (2004) Rapid progradation of the Pliocene-Pleistocene continental margin, northern Taranaki Basin, New Zealand, and implications. In: Proc NZ Petrol Conf, pp 1–9

  38. Helle K (2003) Anatomy and allostratigraphy of deep-marine Mount Messenger Formation (Miocene), eastern-margin Taranaki Basin, New Zealand. Unpublished MSc thesis. University of Bergen

  39. Hillman JIT, Klaucke I, Pecher IA, Gorman AR, von Deimling JS, Bialas J (2018) The influence of submarine currents associated with the Subtropical Front upon seafloor depression morphologies on the eastern passive margin of South Island, New Zealand. N Z J Geol Geophys 61:112–125. https://doi.org/10.1080/00288306.2018.1434801

    Article  Google Scholar 

  40. Hovland M, Judd AG (1988) Seabed pockmarks and seepages—impacts on geology, biology and the marine environment. Graham and Trotman, London. https://doi.org/10.13140/RG.2.1.1414.1286

    Google Scholar 

  41. Hovland M, Talbot MR, Qvale H, Olaussen S, Aasberg L (1987) Methane-related carbonate cements in pockmarks of the North Sea. J Sediment Petrol 57:881–892

    Google Scholar 

  42. Hovland M, Gardner JV, Judd AG (2002) The significance of pockmarks to understanding fluid flow processes and geohazards. Geofluids 2:127–136. https://doi.org/10.1046/j.1468-8123.2002.00028.x

    Article  Google Scholar 

  43. Hustoft S, Mienert J, Bünz S, Nouze H (2007) High-resolution 3D seismic data indicate focussed fluid flow migration pathways above polygonal fault systems of the mid-Norwegian margin. Mar Geol 245:89–106. https://doi.org/10.1016/j.margeo.2007.07.004

    Article  Google Scholar 

  44. Hustoft S, Dugan B, Mienert J (2009) Effects of rapid sedimentation on developing the Nyegga pockmark field: constraints from hydrological modeling and 3-D seismic data, offshore mid-Norway. Geochem Geophys Geosyst 10:Q06012. https://doi.org/10.1029/2009GC002409

    Article  Google Scholar 

  45. Huuse M, Van Rensberrgen P, Jackson CAL, Flemings PB, Davies RJ, Dixon RJ (2010) Subsurface sediment remobilisation and fluid flow in sedimentary basins: preface. Basin Res 22:341–360

    Article  Google Scholar 

  46. Ilg BR, Hemmings-Sykes S, Nicol A, Baur J, Fohrmann M, Funnell R, Milner M (2012) Normal faults and gas migration in an active plate boundary, southern Taranaki Basin, offshore New Zealand. AAPG Bull 96:1733–1756. https://doi.org/10.1306/02011211088

    Article  Google Scholar 

  47. King PR, Thrasher GP (1992) Post-Eocene development of the Taranaki Basin, New Zealand; convergent overprint of a passive margin. In: Watkins JS, Zhiqiang F, McMillen KJ (eds) Geology and geophysics of continental margins, AAPG Memoir, vol 53, pp 93–118

    Google Scholar 

  48. King PR, Thrasher GP (1996) Cretaceous-Cenozoic geology and petroleum systems of the Taranaki Basin, New Zealand. Institute of Geological & Nuclear Sciences Monograph, 13. Lower Hutt, New Zealand. 243p

  49. King PR, Scott GH, Robinson PH (1993) Description, correlation and depositional history of Miocene sediments outcropping along North Taranaki coast. GNS Sci Monogr 5:199p

  50. King PR, Browne GH, Arnot MJ, Slatt RM, Helle K, Stomsoyen I (2007) A 2-D oblique-dip outcrop transect through an entire third-order, progradational, deep-water clastic succession (Late Miocene Mount Messenger-Urenui Formations), Taranaki Basin, New Zealand. In: Nilsen TH, Shew RD, Steffens GS, Sudlick JRJ (eds). Atlas of deep-water outcrops. AAPG studies in geology 56, CD Rom, Chapter 136. https://doi.org/10.1306/1240948St563302

  51. King PR, Ilg BR, Arnot M, Browne GH, Strachan LJ, Crundwell MP, Helle K (2011) Outcrop and seismic examples of mass-transport deposits from a late Miocene deep-water succession, Taranaki Basin, New Zealand. In: Mass-transport deposits in deepwater settings. SEPM Spec Publ 96:311–350

    Google Scholar 

  52. Kroeger KF, Plaza-Faverola A, Barnes PM, Pecher IA (2015) Thermal evolution of the New Zealand Hikurangi subduction margin: impact on natural gas generation and methane hydrate formation—a model study. Mar Pet Geol 63:97–114. https://doi.org/10.1016/j.marpetgeo.2015.01.020

    Article  Google Scholar 

  53. Kroeger KF, Crutchley GJ, Hill MG, Pecher IA (2017) Potential for gas hydrate formation at the northwest New Zealand shelf margin—new insights from seismic reflection data and petroleum systems modelling. Mar Pet Geol 83:215–230. https://doi.org/10.1016/j.marpetgeo.2017.02.025

    Article  Google Scholar 

  54. Kroeger KF, Thrasher GP, Sarma M (2019) The evolution of a Middle Miocene deep-water sedimentary system in northwestern New Zealand (Taranaki Basin): depositional controls and mechanisms. Mar Pet Geol 101:355–372. https://doi.org/10.1016/j.marpetgeo.2018.11.052

    Article  Google Scholar 

  55. Laird MG (1970) Vertical sheet structures; a new indicator of sedimentary fabric. J Sediment Res 40:428–434. https://doi.org/10.1306/74D71F69-2B21-11D7-8648000102C1865D

    Article  Google Scholar 

  56. Løseth H, Wensaas L, Arntsen B, Hanken N-M, Basire C, Grause K (2001) 1000 m long gas blow out pipes. In: 63rd EAGE Conference and Exhibition, Extended Abstract, p. 524

  57. Løseth H, Gading M, Wensaas L (2009) Hydrocarbon leakage interpreted on seismic data. Mar Pet Geol 26:1304–1319. https://doi.org/10.1016/j.marpetgeo.2008.09.008

    Article  Google Scholar 

  58. Maier KL, Crundwell MP, Coble MA, King PR, Graham SA (2016) Refined depositional history and dating of the Tongaporutuan reference section, north Taranaki, New Zealand: new volcanic ash U–Pb zircon ages, biostratigraphy and sedimentation rates. NZ J Geol Geophy 59:313–329. https://doi.org/10.1080/00288306.2015.1132744

    Article  Google Scholar 

  59. Manley R, Lewis DW (1998) Ichnocoenoses of the Mount Messenger Formation, a Miocene submarine fan system, Taranaki Basin, New Zealand. NZ J Geol Geophy 41:15–33

    Article  Google Scholar 

  60. Masalimova LU, Lowe DR, Sharman GR, King PR, Arnot MJ (2016) Outcrop characterization of a submarine channel-lobe complex: the lower Mount Messenger Formation, Taranaki Basin, New Zealand. Mar Pet Geol 71:360–390. https://doi.org/10.1016/j.marpetgeo.2016.01.004

    Article  Google Scholar 

  61. Moernaut J, de Batist M, Heirman K, van Daele M, Pino M, Brümmer R, Urrutia R (2009) Fluidization of buried mass-wasting deposits in lake sediment and its relevance for paleoseismology: results from a reflection seismic study of lakes Villarrica and Calafquén (south-central Chile). Sediment Geol 213:121–135. https://doi.org/10.1016/sedgeo.2008.12.002

    Article  Google Scholar 

  62. Moss JL, Cartwright J (2010) 3D seismic expression of km-scale fluid-escape pipes from offshore Namibia. Basin Res 22:481–502

    Article  Google Scholar 

  63. Mountjoy JJ, Pecher I, Henrys S, Crutchley S, Barnes PM, Plaza-Faverola A (2014) Shallow methane hydrate system controls ongoing, downslope sediment transport in a low-velocity active submarine landslide complex, Hikurangi Margin, New Zealand. Geochem Geophys Geosyst 15:4137–4156. https://doi.org/10.1002/2014GC005379

    Article  Google Scholar 

  64. Munkejord ST, Bernstone C, Clausen S, de Koeijer G, Mølnvik MJ (2013) Combining thermodynamic and fluid flow modelling for CO2 flow assurance. Energy Proceedia 37:2904–2913

    Article  Google Scholar 

  65. Nelson CS, Schellenberg F, King PR, Ricketts B, Kamp PJJ, Browne GH, Campbell KA (2004) Note on paramoudra-like carbonate concretions in the Urenui Formation, north Taranaki: possible plumbing system for a late Miocene methane seep field. Proc N Z Petrol Conf 2004:7–10

    Google Scholar 

  66. Nelson CS, Campbell KA, Nyman SL, Francis DA, Hood SD, Collins M, Gregory MR, Greinert J, Peckmann J, Pearson MJ (2007) Miocene hydrocarbon seep-carbonate systems in North Island, New Zealand. Geol Soc Am Meeting & Exposition (2007: Denver, Colo). p 147

  67. Nelson CS, Campbell KA, Nyman SL, Greinert J, Francis DA, Hood SD (2019) Genertic link between Miocene seafloor methane seep limestones and under lying carbonate conduit concretions at Rocky Knob, Gisborne, New Zealand. J Geol Geophys 63. https://doi.org/10.1080/00288306.2018.1561474

  68. Nodder SD, Nelson CS, Kamp PJJ (1990) Mass-emplaced siliciclastic-volcaniclastic-carbonate sediments in middle Miocene shelf-to-slope environments at Waikawau, northern Taranaki and some implications for Taranaki Basin development. N Z J Geol Geophys 33:599–615. https://doi.org/10.1080/00288306.1990.10421378

    Article  Google Scholar 

  69. Nyman SL, Nelson CS (2011) The place of tubular concretions in hydrocarbon cold seep systems: Late Miocene Urunui Formation, Taranaki Basin, New Zealand. AAPG Bull 95:1495–1524. https://doi.org/10.1306/01191110017

    Article  Google Scholar 

  70. Nyman SL, Nelson CS, Campbell KA (2010) Miocene tubular concretions in East Coast Basin, New Zealand: analogue for the subsurface plumbing of cold seeps. Mar Geol 272:319–336

    Article  Google Scholar 

  71. Omeru T, Cartwright JA, Bull S (2016) Kinematics of submarine slope failures in the deepwater Taranaki basin, New Zealand. In: Mamarche G et al (eds) Submarine mass movements and their consequences. Advances in Natural and Technological Hazards Research 41. Springer, Cham. https://doi.org/10.1007/978-3-319-20979-1_6

    Google Scholar 

  72. Orpin AR (1997) Dolomite chimneys as possible evidence of coastal fluid expulsion, uppermost Otago continental slope, southern New Zealand. Mar Geol 138:51–67

    Article  Google Scholar 

  73. Panpichityota N, Morley CK, Ghosh J (2017) Link between growth faulting and initiation of a mass transport deposit in the northern Taranaki Basin, New Zealand. Basin Res 30:237–248. https://doi.org/10.1111/bre.12251

    Article  Google Scholar 

  74. Parize O, Beaudoin B, Eckert S, Hadj-Hassen F, Tijani M, de Fouquet C, Vandromme R, Friès G, Schneider F, Su K, Trouiller A (2007) The Vocontian Aptian and Albian syndepositional clastic sills and dykes: a field-based mechanical approach to predict and model the early fracturing of marly-limy sediments. In Hurst A and Cartwright J, eds., Sand injectites: implications for hydrocarbon exploration and production: AAPG Memoir 87: 163–172. https://doi.org/10.1306/1209860M873262

  75. Plaza-Faverola A, Bünz S, Mienert J (2011) Repeated fluid expulsion through sub-seabed chimneys offshore Norway in response to glacial cycles. Earth Planet Sci Lett 305:297–308. https://doi.org/10.1016/j.epsl.2011.03.001

    Article  Google Scholar 

  76. Plaza-Faverola A, Klaeschen D, Barnes P, Pecher I, Henrys S, Mountjoy J (2012) Evolution of fluid expulsion and concentrated hydrate zones across the southern Hikurangi subduction margin, New Zealand: an analysis from depth migrated seismic data. Geochem Geophys Geosyst 13. https://doi.org/10.1029/2012GC004228

  77. Reilly C, Nicol A, Walsh JJ, Kroeger KF (2016) Temporal changes of fault seal and early charge of the Maui Gas-condensate field, Taranaki Basin, New Zealand. Mar Pet Geol 70:237–250

    Article  Google Scholar 

  78. Rotzien JR, Lowe DR, King PR, Browne GH (2014) Stratigraphic architecture and evolution of a deep-water slope channel-levee and overbank apron: the Upper Miocene Upper Mount Messenger Formation, Taranaki Basin. Mar Pet Geol 52:22–41. https://doi.org/10.1016/j.marpetgeo.2014.01.006

    Article  Google Scholar 

  79. Rotzien JR, Browne GH, King PR (2018) Geochemical, petrographic, and U-Pb geochronological evidence for multi-sourced poly-cyclic provenance of deep-water strata in a hybrid tectonic setting: the Upper Miocene Upper Mount Messenger Formation, Taranaki Basin, New Zealand. AAPG Bull 102:1763–1802. https://doi.org/10.1306/0206181616817222

    Article  Google Scholar 

  80. Rusconi FJ (2017) 3D seismic interpretation of a Plio-Pleistocene mass transport deposit in the deepwater Taranaki basin of New Zealand. Unpublished MS Thesis, University of Arkansas. 57 p

  81. Sagar M, Browne GH, Arnot MJ, Seward D, Strogen DP (2019) New U-Pb zircon ages and a revised integrated age model for the late Miocene northern Taranaki coastal section, New Zealand. NZ J Geol Geophy. https://doi.org/10.1080/00288306.2019.1600555

  82. Sahling H, Bohrmann G, Spiess V, Bialas J, Breitzeke M, Ivanov M, Kasten S, Krastel S, Schneider R (2008) Pockmarks in the Northern Congo Fan area, SW Africa: complex seafloor features shaped by fluid flow. Mar Geol 249:206–225. https://doi.org/10.1016/j.margeo.2007.11.010

    Article  Google Scholar 

  83. Salazar M, Moscardelli L, Wood L (2015) Utilising clinoform architecture to understand the drivers of basin margin evolution: a case study in the Taranaki Basin, New Zealand. Basin Res 28:1–26

    Google Scholar 

  84. Schellenberg F (2002) The paramoudra concretions within the Urenui Formation, Taranaki Basin, west coast of New Zealand. Unpub Diplomarbeit, University of Tübingen, 57 p

  85. Sharman GR, Graham SA, Masalimova LU, Shumaker LE, King PR (2015) Spatial patterns of deformation and paleoslope estimation within the marginal and central portions of a basin-floor mass-transport deposit, Taranaki Basin, New Zealand. Geosphere 11:266–306. https://doi.org/10.1130/geos01126.1

    Article  Google Scholar 

  86. Sheriff RE, Geldart LP (1983) Exploration seismology, volume 2: data-processing and interpretation. Cambridge University Press, Cambridge

    Google Scholar 

  87. Singh D, Kumar PC, Sain K (2016) Interpretation of gas chimney from seismic data using artificial neural network: a study from Maari 3D prospect in the Taranaki Basin, New Zealand. J Nat Gas Sci Eng 36:339–357

    Article  Google Scholar 

  88. Stagpoole V, Nicol A (2008) Regional structure and kinematic history of a large subduction back thrust: Taranaki Fault, New Zealand. Tectonics 113:BO1403. https://doi.org/10.1029/2007JB004170

    Article  Google Scholar 

  89. STOS (1988) Well resume Mokau-1 PPL 38098. Ministry of Economic Development Petroleum Report PR1396 (1988): 700p

  90. Strogen DP, (compiler) (2011) Updated paleogeographic maps for the Taranaki Basin and surrounds. GNS Science Report 2010/53: 83p

  91. Strogen DP, Seebeck H, Nicol A, King PR (2017) Two-phase Cretaceous–Paleocene rifting in the Taranaki Basin region, New Zealand; implications for Gondwana break-up. J Geol Soc 174:929–946

    Article  Google Scholar 

  92. Van Rensbergen P, Rabaute A, Colpaert A, Ghislain TS, Mathijs M, Bruggeman A (2007) Fluid migration and fluid seepage in the Connemara field, Porcupin Basin interpreted from industrial 3D seismic and well data combined with high-resolution site survey data. Int J Earth Sci 96:185–197

    Article  Google Scholar 

  93. Waghorn KA, Pecher I, Strachan LJ, Crutchley G, Bialas J, Coffin R, Davy B, Koch S, Kroeger K, Papenberg C, Sarkar S, SO.226 Scientific Party (2018) Paleo-fluid expulsion and contouritic drift formation on the Chatham Rise, New Zealand. Basin Res 30:5–19. https://doi.org/10.1111/bre.12237

    Article  Google Scholar 

  94. Woolorton T (2015) Shallow hazard and gas escape systems modelling from 3D seismic. In: 2015 SEG Ann Meeting. Soc Explor Geophy p 1673–1676

  95. Xu WY, Germanovich LN (2006) Excess pore pressure resulting from methane hydrate dissolution in marine sediments: a theoretical approach. J Geophys Res 111:B01104. https://doi.org/10.1029/2004JB003600

    Article  Google Scholar 

Download references

Acknowledgements

Biostratigraphic dating used in this study has come from decades of work by palaeontologists from GNS Science and the New Zealand Geological Survey, most notably in recent years by George Scott, Martin Crundwell and Hugh Morgans. Several collaborators and colleagues have contributed to discussions and data collection over several years including Laurisa Masalimova, Jon Rotzien, Martin Crundwell, Brad Ilg, Hannu Seebeck, Matt Sagar, Kyle Bland, Hannu Seebeck and Andy Nicol. We thank Russell and Parani Gibbs of Tongaporutu for access to their land. Technical reviews by Jess Hillman and Karsten Kroeger (GNS Science) and by Joe Cartwright (Oxford University) and Glenn Sharman (University of Arkansas) greatly improved the manuscript.

Funding

Financial support for this work has come from the New Zealand government through Ministry of Business Innovation and Employment SSIF funding to GNS Science as part of the Sedimentary Basin Research Programme.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to G. H. Browne or S. Bull.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 9986 kb)

ESM 2

(PDF 72108 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Browne, G.H., Bull, S., Arnot, M.J. et al. The role of mass transport deposits contributing to fluid escape: Neogene outcrop and seismic examples from north Taranaki, New Zealand. Geo-Mar Lett 40, 789–807 (2020). https://doi.org/10.1007/s00367-020-00641-z

Download citation