Skip to main content

Advertisement

Log in

Spatial and temporal variability of free gas content in shallow sediments: Lake Kinneret as a case study

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Organic-rich aquatic sediments are a significant source of methane to the atmosphere. In situ remote quantifications of gas content in shallow sediment is a complex task due to its large spatiotemporal heterogeneity. The spatial and multiannual changes of free gas (methane) content (Θ) in shallow sediments were studied in deep subtropical Lake Kinneret. We implemented recently developed acoustic methodology that allows estimating Θ in sediment based on assessment of sound speed. This method is based on measurement of reflection coefficient of acoustic signal at low-to-mid frequencies from the water-sediment interface using geoacoustic inversion technique. The used approach provides an assessment of the mean gas content over certain bottom area near the sampling location. Analysis of acoustic measurements carried out in 2015–2018 shows distinct changes in Θ with bottom depth along the offshore transects. We found the inverse relationship between Θ and lake level. The observed patterns in sedimentary gas content are supported by previous observations showing (a) changes of acoustic sediment properties with depth and (b) inverse relationship between rate of gas ebullition from bottom and lake level. The obtained absolute values of Θ at different locations were the same order of magnitude as those estimated directly from frozen cores. The validity and reliability of the method and its further development are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abegg F, Hohnberg H, Pape T, Bohrmann G, Freitag J (2008) Deep-Sea Research I Development and application of pressure-core-sampling systems for the investigation of gas- and gas-hydrate-bearing sediments. 55:1590–1599. https://doi.org/10.1016/j.dsr.2008.06.006

  • Adler M, Eckert W, Sivan O (2011) Quantifying rates of methanogenesis and methanotrophy in Lake Kinneret sediments (Israel) using pore-water profiles. Limnology and Oceanography 56(4):1525–1535. https://doi.org/10.4319/lo.2011.56.4.1525

    Article  Google Scholar 

  • Albert DB, Martens CS, Alperin MJ (1998) Biogeochemical processes controlling methane in gassy coastal sediments – part 2: groundwater flow control of acoustic turbidity in Eckernförde Bay sediments. Continental Shelf Research 18:1771–1793. https://doi.org/10.1016/S0278-4343(98)00057-0

    Article  Google Scholar 

  • Algar CK, Boudreau BP, Barry MA (2011) Initial rise of bubble in cohesive sediments by a process of viscoelastic fracture. Journal of Geophysical Research 116:B04207. https://doi.org/10.1029/2010JB008133

    Article  Google Scholar 

  • Anderson MA, Martinez D (2015) Methane gas in lake bottom sediments quantified using acoustic backscatter strength. Journal of Soils and Sediments:1246–1255. https://doi.org/10.1007/s11368-015-1099-1

  • Anderson AL, Abegg F, Hawkins JA, Duncan ME, Lyons AP (1998) Bubble populations and acoustic interaction with the gassy floor of Eckernförde Bay. Continental Shelf Res 18(14–15):1807–1838. https://doi.org/10.1016/S0278-4343(98)00059-4

    Article  Google Scholar 

  • Baggeroer AB, Kuperman WA, Mikhalevsky PN (1993) An overview of matched field methods in ocean acoustics. IEEE Ocean Eng. Vol. 18(N4):401–425

    Article  Google Scholar 

  • Barry M (2010) Elastic and fracture behaviour of marine sediment in response to free gas, (September). https://doi.org/10.13140/2.1.3157.5844

  • Bastviken D, Cole J, Pace M, Tranvik L (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. 18:1–12. https://doi.org/10.1029/2004GB002238

  • Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A (2011) Freshwater methane emissions offset the continental carbon sink. Science 331:50–50

    Article  Google Scholar 

  • Ben-Avraham Z, Shaliv G, Nur A (1986) Acoustic reflectivity and shallow sedimentary structure in the sea of Galilee, Jordan Valley. Marine Geology 70:175–189

    Article  Google Scholar 

  • Ben-Avraham Z, Amit G, Golan A, Begin ZB (1990) The bathymetry of Lake Kinneret and its structural significance. Israel Journal of Earth Sciences 39:77–84

    Google Scholar 

  • Berman T, Zohary T, Nishri A, Sukenik A (2014) General background. In: Zohary T, Sukenik A, Berman T, Nishri A (eds) Lake Kinneret: Ecology and management. Springer, Berlin, pp 1–18

    Google Scholar 

  • Bohrmann G, Torres ME (2006) Gas hydrates in marine sediments. https://doi.org/10.1007/3-540-32144-6

    Book  Google Scholar 

  • Brekhovskikh L, Lysanov Y (1982) Fundamentals of ocean acoustics. Springer

  • Carroll JJ, Jou F, Mather AE, Otto FD (1998) The solubility of methane in aqueous solutions of monoethanolamine, diethanolamine and triethanolamine. 76(5):945–951

  • Choi JH, Seol Y, Boswell R, Juanes R (2011) X - ray computed - tomography imaging of gas migration in water in saturated sediments : from capillary invasion to conduit opening, 38(table 1), 1–5. https://doi.org/10.1029/2011GL048513

  • Dale AW, Aguilera DR, Regnier P, Fossing H, Knab NJ, Jørgensen BB (2008) Seasonal dynamics of the depth and rate of anaerobic oxidation of methane in Aarhus Bay (Denmark) sediments. J Mar Res 66(1):127–155. https://doi.org/10.1357/002224008784815775

    Article  Google Scholar 

  • Dean JF, Middelburg JJ, Röckmann T, Aerts R, Blauw LG, Egger M et al (2018) Methane feedbacks to the global climate system in a warmer world. Reviews of Geophysics 56:207–250. https://doi.org/10.1002/2017RG000559

    Article  Google Scholar 

  • DelSontro T, Kunz M, Kempter T, Wüest A, Wehrli B, Senn D (2011) Spatial heterogeneity of methane ebullition in a large tropical reservoir. Environmental Science &. Technology 45:9866–9873. https://doi.org/10.1021/es2005545

  • Deutzmann JS, Schink B (2011) Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater lake. Applied and Environmental Microbiology 77(13):4429 LP-4436. https://doi.org/10.1128/AEM.00340-11

    Article  Google Scholar 

  • Doinikov AA, Marmottant P (2018) Natural oscillations of a gas bubble in a liquid-filled cavity located in a viscoelastic medium. Journal of Sound and Vibration 420:61–72. https://doi.org/10.1016/j.jsv.2018.01.034

    Article  Google Scholar 

  • Duan Z, Mao S (2006) A thermodynamic model for calculating methane solubility, density and gas phase composition of methane-bearing aqueous fluids from 273 to 523 K and from 1 to 2000 bar. Geochimica et Cosmochimica Acta 70(13):3369–3386. https://doi.org/10.1016/j.gca.2006.03.018

    Article  Google Scholar 

  • Dück Y, Liu L, Lorke A, Ostrovsky I, Katsman R, Jokiel C (2019) A novel freeze corer for characterization of methane bubbles and assessment of coring disturbances. Methods, Limnology and Oceanography

    Book  Google Scholar 

  • Etter PC (2013) Underwater acoustic modeling and simulation, Fourth Edition. https://doi.org/10.1201/b13906

  • Gusev VA (2014) Nonlinear acoustic wave propagation in the waveguide formed by the bottom bubble layer. In: Proceedings of the International Conference DAYS on DIFFRACTION, (3), pp 107–112

    Google Scholar 

  • Hadas O, Pinkas R (1995) Sulfate reduction in the hypolimnion and sediments of Lake Kinneret, Israel. Hydrobiology 33:63–72

    Google Scholar 

  • Hampton L (1974) Physics of Sound in Marine Sediments. Physics of sound in marine sediments. https://doi.org/10.1007/978-1-4684-0838-6

  • Harries J, Brindley H, Sagoo P, Bantges R (2001) Increases in greenhouse forcing inferred from the outgoing longwave radiation spectra of the Earth in, 6, 355–357

  • IPCC (2007) Climate change 2007: impacts, adaptation and vulnerability: contribution of working group II to the fourth assessment report of the intergovernmental panel. Genebra, Suíça. https://doi.org/10.1256/004316502320517344

  • Judd AG, Hovland M (1992) The evidence of shallow gas in marine sediments. Cont Shelf Res 12:717–725

  • Katsman R (2019) Methane bubble escape from gas horizon in muddy aquatic sediment under periodic wave loading, 6507–6515. https://doi.org/10.1029/2019GL083100

  • Katsman R, Ostrovsky I, Makovsky Y (2013) Methane bubble growth in fine-grained muddy aquatic sediment: insight from modeling. Earth and Planetary Science Letters 377:336–346. https://doi.org/10.1016/j.epsl.2013.07.011

    Article  Google Scholar 

  • Katsnelson B, Petnikov V, Lynch J (2012) Fundamentals of shallow water acoustics. In Springer 1. https://doi.org/10.1017/CBO9781107415324.004

  • Katsnelson B, Katsman R, Lunkov A, Ostrovsky I (2017) Acoustical methodology for determination of gas content in aquatic sediments, with application to Lake Kinneret, Israel, as a case study. Limnology and Oceanography: Methods 15(6):531–541. https://doi.org/10.1002/lom3.10178

    Article  Google Scholar 

  • Katsnelson B, Lunkov A, Ostrovsky I, Uzhansky E (2019) Estimation of gassy sediment parameters from measurements of angular and frequency dependencies of reflection coefficient. Proceedings of Meetings on Acoustics. https://doi.org/10.1121/2.0000963

  • Khabeev NS (2006) Resonance properties of soluble gas bubbles. International Journal of Heat and Mass Transfer 49(5–6):1022–1026. https://doi.org/10.1016/j.ijheatmasstransfer.2005.09.008

    Article  Google Scholar 

  • Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson EL, Houwel-ing S, Josse B, Fraser PJ, Krummel PB, Lamarque J-F, Langenfelds RL, Quéré CL, Naik V, O’Doherty S, Palmer PI, Pison I, Plummer D, Poulter B, Prinn RG, Rigby M, Ringeval B, Santini M, Schmidt M, Shindell DT, Simpson IJ, Spahni R, Steele LP, Strode SA, Sudo K, Szopa S, van der Werf GR, Voulgarakis A, van Weele M, Weiss RF, Williams JE, Zeng G (2013) Three decades of global methane sources and sinks. Nature Geoscience 6:813. https://doi.org/10.1038/ngeo1955

    Article  Google Scholar 

  • Komissarova NN, Furduev, a. V. (2004) Acoustical method for measuring the gas content in bottom sediments. Acoustical Physics 50(5):571–574. https://doi.org/10.1134/1.1797462

    Article  Google Scholar 

  • Koren N, Klein M (2000) Rate of sedimentation in Lake Kinneret, Israel: spatial and temporal variations. Earth Surf Proc Land 25(8):895–904

    Article  Google Scholar 

  • Lazar M, Gasperini L, Polonia A, Lupi M, Mazzini A (2019) Constraints on gas release from shallow lake sediments — a case study from the sea of Galilee. Geo-Marine Letters. 39:377–390. https://doi.org/10.1007/s00367-019-00588-w

    Article  Google Scholar 

  • Leighton TG, Dogan H, White PR, Mantouka A, Best AI, Robb GBR, Fox P (2015) In situ quantification of shallow gas in marine sediments: experimental methods and propagation results

  • Liu X, Gao Y, Zhang Z, Luo J, Yan S (2017) Sediment-water methane flux in a eutrophic pond and primary influential factors at different time scales. Water (Switzerland) 9(8). https://doi.org/10.3390/w9080601

  • Liu L, Sotiri K, Dück Y, Hilgert S, Ostrovsky I, Uzhansky E, Katsman R, Katsnelson B, Bookman R, Wilkinson J, Lorke A (2019) The control of sediment gas accumulation on spatial distribution of ebullition in Lake Kinneret. Geo-Marine Letters (This issue)

  • Martens CS, Klump JV (1980) Biogeochemical cycling in an organic-rich coastal marine basin-I. methane sediment-water exchange processes. Geochimica et Cosmochimica Acta 44(3):471–490

    Article  Google Scholar 

  • Martens CS, Albert DB, Alperin MJ (1998) Biogeochemical processes controlling methane in gassy coastal sediments - part 1. A model coupling organic matter flux to gas production, oxidation and transport. Continental Shelf Research 18(14–15):1741–1770. https://doi.org/10.1016/S0278-4343(98)00056-9

    Article  Google Scholar 

  • Mavko G, Mukerji T, Dvorkin J (1998) The rock physics handbook: tools for seismic analysis of porous media. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Mogollón JM, Dale AW, L’Heureux I, Regnier P (2011) Impact of seasonal temperature and pressure changes on methane gas production, dissolution, and transport in unfractured sediments. J Geophys Res: Biogeosci 116(3):1–17. https://doi.org/10.1029/2010JG001592

    Article  Google Scholar 

  • Mogollón JM, Dale AW, Jensen JB, Schlüter M, Regnier P (2013) A method for the calculation of anaerobic oxidation of methane rates across regional scales: an example from the belt seas and the sound (North Sea-Baltic Sea transition). Geo-Marine Letters 33(4):299–310. https://doi.org/10.1007/s00367-013-0329-z

    Article  Google Scholar 

  • Nüsslein B, Chin K-J, Eckert W, Conrad R (2001) Evidence for anaerobic syntrophic acetate oxidation during methane production in the profundal sediment of subtropical Lake Kinneret (Israel). Environ Microbiol 3:460–470 https://www.ncbi.nlm.nih.gov/pubmed/11553236

    Article  Google Scholar 

  • Ostrovsky I (2000) The upper-most layer of bottom sediments: sampling and artifacts. Arch Hydrobiol Spec Issues Advanc Limnol 55:243–255

    Google Scholar 

  • Ostrovsky I (2003) Methane bubbles in Lake Kinneret: quantification and temporal and spatial heterogeneity. Limnology and Oceanography 48(3):1030–1036. https://doi.org/10.4319/lo.2003.48.3.1030

    Article  Google Scholar 

  • Ostrovsky I (2009) The acoustic quantification of fish in the presence of methane bubbles in the stratified Lake Kinneret, Israel. ICES Journal of Marine Science 66(6):1043–1047. https://doi.org/10.1093/icesjms/fsp103

    Article  Google Scholar 

  • Ostrovsky I, Sukenik A (2008b) Spatial heterogeneity of biogeochemical parameters in a subtropical lake. In: Mohanty PK (ed) Monitoring and modeling lakes and coastal environments. Springer, Berlin, pp 79–90

  • Ostrovsky I, Tęgowski J (2010) Hydroacoustic analysis of spatial and temporal variability of bottom sediment characteristics in Lake Kinneret in relation to water level fluctuation. Geo-Marine Letters 30(3–4):261–269. https://doi.org/10.1007/s00367-009-0180-4

    Article  Google Scholar 

  • Ostrovsky I, Yacobi YZ (1999) Organic matter and pigments in surface sediments: possible mechanisms of their horizontal distributions in a stratified lake. Canadian Journal of Fisheries and Aquatic Sciences 56(6):1001–1010. https://doi.org/10.1139/f99-032

    Article  Google Scholar 

  • Ostrovsky I, McGinnis DF, Lapidus L, Eckert W (2008a) Quantifying gas ebullition with echosounder: the role of methane transport by bubbles in a medium-sized lake. Limnology and Oceanography: Methods 6:105–118. https://doi.org/10.4319/lom.2008.6.105

  • Ostrovsky I, Rimmer A, Yacobi YZ, Nishri A, Sukenik A, Hadas O, Zohary T (2013) Long-term changes in the Lake Kinneret ecosystem: the anthropogenic factors. Climate change and global warming of inland waters: impacts and mitigation for ecosystems and societies, (July 2016), 271–293. https://doi.org/10.1002/9781118470596.ch16

  • Rimmer A, Givati A (2014) Hydrology. Chap. 31. In: Zohary T, Sukenik A, Berman T, Nishri A (eds) Lake Kinneret: ecology and management. Springer, Heidelberg, pp 97–111

    Chapter  Google Scholar 

  • Robb GBN, Leighton TG, Dix JK, Best AL, Humphrey VF, White PR (2006) Measuring bubble populations in gassy marine sediments: a review, 28(Type 3), 60–68. http://eprints.soton.ac.uk/43407/

  • Rozhin FV, Tonakanov OS (1988) General hydroacoustics. MGU, Moscow [in Russian]

    Google Scholar 

  • Schmid M, Ostrovsky I, McGinnis DF (2017) Role of gas ebullition in the methane budget of a deep subtropical lake: what can we learn from process-based modeling? Limnology and Oceanography 62(6):2674–2698. https://doi.org/10.1002/lno.10598

    Article  Google Scholar 

  • Sills GC, Nageswaran S (1984) Compressibility of gassy soil. Oceanology International, Conference, Brighton, Society for Underwater Technology

  • Sirhan ST, Katsman R, Lazar M (2019) Methane bubble ascent within fine-grained cohesive aquatic sediments: dynamics and controlling factors. Environ Sci Technol 53:6320–6329. Research-article. https://doi.org/10.1021/acs.est.8b06848

    Article  Google Scholar 

  • Sivan O, Adler M, Pearson A, Gelman F, Bar-or I, John SG (2011) Geochemical evidence for iron-mediated anaerobic oxidation of methane, 56(4), 1536–1544. https://doi.org/10.4319/lo.2011.56.4.1536

  • Sobek S, Zurbrügg R, Ostrovsky I (2011) The burial efficiency of organic carbon in the sediments of Lake Kinneret. Aquatic Sciences 73(3):355–364. https://doi.org/10.1007/s00027-011-0183-x

    Article  Google Scholar 

  • Tegowski J (2005) Acoustical classification of the bottom sediments in the southern Baltic Sea, 130, 153–161. https://doi.org/10.1016/j.quaint.2004.04.038

  • Tegowski J, Klusek Z, Jakacki J (2006) Nonlinear acoustical methods in the detection of gassy sediments. In: Acoustic sensing techniques for the shallow water environment: inversion methods and experiments, pp 125–136. https://doi.org/10.1007/978-1-4020-4386-4-10

    Chapter  Google Scholar 

  • Tong LH, Liu YS, Geng DX, Lai SK (2017) Nonlinear wave propagation in porous materials based on the Biot theory:756. https://doi.org/10.1121/1.4996439

  • Tõth Z, Spiess V, Mogollõn JM, Jensen JB (2014) Estimating the free gas content in Baltic Sea sediments using compressional wave velocity from marine seismic data. J Geophys Res: Solid Earth 119(12):8577–8593. https://doi.org/10.1002/2014JB010989

    Article  Google Scholar 

  • Tréhu AM, Flemings PB, Bangs NL, Chevallier J, Grácia E, Johnson JE, Liu C-S, Liu X, Riedel M, Torres ME (2004) Feeding methane vents and gas hydrate deposits at south hydrate ridge. Geophys Res Lett 31:L23310. https://doi.org/10.1029/2004GL021286

    Article  Google Scholar 

  • Urick RJ (1975) Principles of underwater sound. McGraw-Hill, New York 384p

    Google Scholar 

  • Uzhanskii E (2018) Estimation of gassy sediment parameters using remote acoustical methods: Lake Kinneret, North of Israel as a case study. Master Thesis

  • Wever TF, Abegg F, Fiedler HM, Fechner G, Stender IH (1998) Shallow gas in the muddy sediments of Eckernförde Bay, Germany. Continental Shelf Research 18(14–15):1715–1739. https://doi.org/10.1016/S0278-4343(98)00055-7

    Article  Google Scholar 

  • Whiticar MJ (2002) Diagenetic relationships of methanogenesis, nutrients , acoustic turbidity, pockmarks and freshwater seepages in Eckernförde Bay, 182

  • Wilkens RH, Richardson MD (1998) The influence of gas bubbles on sediment acoustic properties: in situ, laboratory, and theoretical results from Eckernförde Bay, Baltic Sea. Continental Shelf Research 18(14–15):1859–1892. https://doi.org/10.1016/S0278-4343(98)00061-2

    Article  Google Scholar 

  • Wood AW (1955) A textbook of sound. McMillan Co., New York

    Google Scholar 

  • Yacobi YZ, Ostrovsky I (2011) Sedimentation of photosynthetic pigments during the bloom of the green sulfur bacterium Chlorobium phaeobacteroides in Lake Kinneret: spatial patterns. Hydrobiologia 660(1):117–124. https://doi.org/10.1007/s10750-010-0383-8

    Article  Google Scholar 

  • Zheng G, Huang Y, Hua J (2017) Sound speed, attenuation, and reflection in gassy sediments, 530. https://doi.org/10.1121/1.4996440

Download references

Acknowledgments

We thank the anonymous reviewer and editor for their careful reading of our manuscript and their useful comments and suggestions. We thank Dr. Gennady Zaslavsky, Mr. Semion Kaganovsky, Mr. Oz Tzabari-Dar, and Mr. Moti Diamant for their assistance during our experiments.

Funding

This work was supported by the Israel Science Foundation, grant 565/15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Uzhansky.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uzhansky, E., Katsnelson, B., Lunkov, A. et al. Spatial and temporal variability of free gas content in shallow sediments: Lake Kinneret as a case study. Geo-Mar Lett 40, 491–505 (2020). https://doi.org/10.1007/s00367-019-00629-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-019-00629-4

Navigation