Skip to main content

Quantifying the high coastal dynamics of tropical mesotidal barrier island-spit systems: case study in Northeast Brazil

Abstract

This study aimed to quantify the morphological variations of the tropical mesotidal barrier-spit systems (MBs) in Northeast Brazil to understand their evolution. Therefore, Landsat 5 TM and Landsat 8 OLI images were used to construct two multitemporal analyses: one in 4-year intervals (low frequency) and another in 1-year intervals (high frequency). The results revealed that the coastal dynamic was so intense that only high-frequency analysis could represent its evolutionary behavior. Low-frequency analysis, on the other hand, could lead to the misinterpretation of the data. Despite the strong coastal dynamic, there was a long-term equilibrium in the areas occupied by the MBs. Furthermore, regarding evolutionary behavior, there were two different types of MBs: migrant and stationary. Migrant MB movement resulted from the joint actions of the meteo-oceanographic forcings that generally push the whole barrier westward, conserving its shape. The migration rate can reach 100 m per year. This process represents the visible and massive movement of sediment along the shore. The changes observed in most MBs, whether migrant or stationary, reflect their ephemeral nature and must serve as a warning for human interventions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Notes

  1. 1.

    Website developed by Google and the Carnegie Mellon University CREATE Lab that provides a global and zoomable video made from 33 cloud-free annual mosaics, one for each year from 1984 to 2016, illustrating 32 continuous years of the Earth’s surface in few seconds.

  2. 2.

    Laboratory of Marine Geology and Geophysics and Environmental Monitoring of Federal University of Rio Grande do Norte (GGEMMA-UFRN)

References

  1. Alves AL, Amaro VE, Vital H (2003) Application of remote sensing for monitoring and evaluation of coastal morphodynamic on the northeastern coast of Brazil: the Açu River mouth example. Journal of Coastal Research, SI 35:279–283

    Google Scholar 

  2. Amaro VE, Gomes LRS, Lima FGF, Scudelari AC, Neves CF, Busman DV, Santos ALS (2014) Multitemporal analysis of coastal erosion based on multisource satellite images, Ponta Negra Beach, Natal City, northeastern Brazil. Marine Geodesy 38:1–25. https://doi.org/10.1080/01490419.2014.904257

    Article  Google Scholar 

  3. Araujo M, Vital H, Amaro VE, Silva MA (2004) Caracterização das forçantes hidrodinâmicas – Correntes, ondas e marés- na região costeira de Guamaré-RN. Proceedings of the II Workshop PETRORISCO, Belém, 2004.

  4. Bezerra FHR, Amaral RF, Silva FOS, Sousa MOL, Fonseca VP, Vieira MM (2009) Geologia e recursos minerais da folha Macau- SB.24-X-D-II: estado do Rio Grande do Norte. CPRM, Recife, 63 p

  5. Boyd R, Dalrymple R, Zaitlin BA (1992) Classification of clastic coastal depositional environments. Sedimentary Geology 80:139–150

    Article  Google Scholar 

  6. Bruun P, Gerritsen F (1960) Stability of coastal inlets. North Holland Publ. Co., Amsterdam., 123 p

  7. Caldas LHO, Stattegger K, Vital H (2006) Holocene sea-level history: evidence from coastal sediments of the northern Rio Grande do Norte coast, NE Brazil. Marine Geology 28:39–53

    Article  Google Scholar 

  8. Castro AF, Souto M, Amaro VE, Vital H (2003) Desenvolvimento e aplicação de um banco de dados geográficos na elaboração de mapas da morfodinâmica costeira e sensibilidade ambiental ao derramamento de óleo em áreas costeiras localizadas no Estado do Rio Grande do Norte. Revista Brasileira de Geociencias 33:53–64

    Article  Google Scholar 

  9. Castro AF, Amaro VE, Souto MVS, Grigio AM, Freitas CCM (2011) Modeling and development of a computational system for evaluation of the coastal dynamics of Macau area, Rio Grande do Norte state, Brazil. Journal of Coastal Research 64:1648–1652

    Google Scholar 

  10. Chaves MS, Vital H, Silveira IM (2006) Beach Morphodynamic of the Serra Oil Field, northeastern Brazil. Journal of Coastal Research, SI 39:594–597

    Google Scholar 

  11. Davis RA Jr (1994) Geology of Holocene Barrier Island systems. Springer–Verlag, Berlin, 646 p

    Book  Google Scholar 

  12. Davis RA Jr, Fitzgerald DM (2004) Beaches and coasts. Blackwell, Oxford, pp 115–166

    Google Scholar 

  13. Elias EPL, Van der Spek AJF, Wang ZB, de Ronde J (2012) Morphodynamic development and sediment budget of the Dutch Wadden Sea over the last century. Netherlands J Geosci 91:293–310. https://doi.org/10.1017/S0016774600000457

    Article  Google Scholar 

  14. Elias EPL, Van der Spek AJF, Pearson SG, Cleveringa J (2019) Understanding sediment bypassing processes through analysis of high-frequency observations of Ameland inlet, the Netherlands. Marine Geology 415. https://doi.org/10.1016/j.margeo.2019.06.001

  15. FitzGerald DM, Penland S, Nummedal D (1984) Control of barrier island shape by inlet sediment bypassing: East Frisian Islands, West Germany. Marine Geology 60:355–376

    Article  Google Scholar 

  16. Franco CGM, Amaro VE, Souto MVS (2012) Prognóstico da erosão costeira no litoral setentrional do Rio Grande do Norte para os anos de 2020, 2030 e 2040. Revista de Geologia 25:37–55

  17. Grigio AM, Amaro VE, Vital H, Diodato MA (2005) A method for coastline evolution analysis using GIS and remote sensing - a case study from Guamaré city, Northeast Brazil. Journal of Coastal Research 42:412–421

    Google Scholar 

  18. Hayes MO (1975) Morphology of sand accumulation in estuaries: an introduction to the symposium. Geol and Eng 2:3–22

  19. Hayes MO (1979) Barrier island morphology as a function of tidal and wave regime. In: Leatherman SP (ed) Barrier islands from the Gulf of St. Lawrence to the Gulf of Mexico. Academic Press, New York, pp 1–27

    Google Scholar 

  20. Hayes MO, Kana TW (1976) Terrigenous clastic depositional environments: Some modern examples. University of South Carolina, Columbia, 131p

    Google Scholar 

  21. Herrling G, Winter C (2018) Tidal inlet sediment bypassing at mixed-energy barrier islands. Coastal Engineering 140:342–354. https://doi.org/10.1016/j.coastaleng.2018.08.008

    Article  Google Scholar 

  22. Hesp PA, Short AD (1999) Barrier morphodynamics. In: Short AD (ed) Handbook of beach and Shoreface Morphodynamic. Wiley, New York, pp 307–333

    Google Scholar 

  23. INMET (2017) Instituto Nacional de Meteorologia: dados das séries temporais climáticas. http://www.inmet.gov.br/. Accessed 15 Jan 2017

  24. Lima ZMC, Alves AL, Amaro VE, Vital H (2001) Evolução da Linha de Costa do Esporão de Galinhos (NE Brasil) utilizando fotografias aéreas e imagens Landsat-TM. Pesquisa em Geociências 28:497–507

  25. Lima ZMC, Vital H, Tabosa WF (2006) Morphodynamic variability of the Galinhos spit, NE Brazil. Journal of Coastal Research 39:598–601

    Google Scholar 

  26. Luijendijk AP, Hagenaars G, Ranasinghe R, Baart F, Donchyts G, Aarninkhof S (2018) The state of the World’s beaches. Scientific Reports 8. https://doi.org/10.1038/s41598-018-24630-6

  27. Matos MFA, Scudelari AC, Amaro VE, Fortes CJEM (2017) Integração de Modelagem Numérica (SWAN) e dados de Campo na Determinação do Clima de Ondas no Litoral Setentrional do Rio Grande do Norte. Revista bras Geomorfologia 18:311–328. https://doi.org/10.20502/rbg.v18i2.1153

  28. Mulhern JS, Johnson CL, Martin JM (2017) Is barrier island morphology a function of tidal and wave regime? Marine Geology 387:74–84. https://doi.org/10.1016/j.margeo.2017.02.016

    Article  Google Scholar 

  29. Nimmer E (1989) Climatologia do Brasil. IBGE, Rio de Janeiro, 421 p

    Google Scholar 

  30. Nummedal D, Riley GW, Templet PL (1993) High-resolution sequence architecture: a chronostratigraphic model based on equilibrium profile studies. In: Summerhayes CP, Haq BU, Allen GP (eds) Posamentier HW. International Association of Sedimentologists Special Publication, Sequence Stratigraphy and Facies Associations, pp 55–68. https://doi.org/10.1002/9781444304015.ch4

    Chapter  Google Scholar 

  31. Oertel GF (1985) The barrier island system. Marine Geology 63:1–18. https://doi.org/10.1016/0025-3227(85)90077-5

    Article  Google Scholar 

  32. Pessoa Neto OC, Soares UM, Silva JGF, Roesner EH, Florencio CP, Souza CAV (2007) Bacia Potiguar. Bol. Geociências Petrobras 15:357–369

  33. Reison GE (1992) Transgressive Barrier Island and estuarine systems. In: Walker RG, James NP (eds) Facies models: response to sea level changes. Geological Association of Canada, St. John’s, pp 179–194

    Google Scholar 

  34. Ridderinkhof W, Hoekstra P, Van der Vegt M, De Swart HE (2016) Cyclic behaviour of sandy shoals on the ebb-tidal deltas of the Wadden Sea. Continental Shelf Research 115:14–26. https://doi.org/10.1016/j.csr.2015.12.014

    Article  Google Scholar 

  35. Rios VPL, Amaro VE, Vieira MM, Matos MFA, Prudencio MC, Camara MR (2016) Influência Neotectônica na Morfologia do Sistema de Ilhas Barreiras, Nordeste do Brasil. Revista bras Geomorfologia 17:399–416

  36. Röber V, Kotzollk O, Stattegger K, Vital H (2005) Dynamics of the complex coastal system at Galinhos (RN), NE-Brazil. Meyniana 57:133–155

    Google Scholar 

  37. Roy PS, Cowell PJ, Ferland MA, Thom BG (1994) Wave dominated coasts. In: Carter RWG, Woodroffe CD (eds) Coastal Evolution, Late Quaternary Shoreline Morphodynamics. Cambridge University Press, Cambridge, pp 121–186

    Google Scholar 

  38. Silva CG (1991) Holocene stratigraphy and evolution of the Açu river delta, Rio Grande do Norte state, northeastern Brazil. Dissertation, Duke University

  39. Silva FE (2017) Análise Multitemporal de Unidades Geomorfológicas do Litoral Setentrional do Rio Grande do Norte. UFRN, Natal, 122 p

    Google Scholar 

  40. Silva FE, Amaro VE, Matos MFA (2015) Análise Multitemporal do Campos de Dunas Móveis do Litoral setentrional do Rio Grande do Norte. In: INPE (org), Anais XVII Simpósio Brasileiro de Sensoriamento Remoto http://www.dsr.inpe.br/sbsr2015/files/p1526.pdf. Accessed 20 Mar 2019

  41. Silveira IM, Vital H, Amaro VE, Chaves MS (2006) The evolutionary study of environmental conditions of the Guamaré coast (northeastern Brazil). Journal of Coastal Research, SI 39:237–241

    Google Scholar 

  42. Slatt RM (2013) Stratigraphic reservoir characterization for petroleum geologists, geophysicists, and engineers. Elsevier, 688p

  43. Souto MVS, Grigio AM, Castro AF, Amaro VE, Vital H (2006) Multitemporal analysis of geoenvironmental elements of the coastal dynamics of the region of the Ponta do Tubarão, City of Macau/RN, on the basis of remote sensing products and integration in GIS. Journal of Coastal Research, SI 39:1618–1621

    Google Scholar 

  44. Tabosa WF, Lima ZMC, Vital H, Guedes IMG (2001) Monitoramento Costeiro das Praias de São Bento do Norte e Caiçara do Norte – NE Brasil. Pesquisa em Geociências 28:383–392

  45. U.S. Geological Survey (2018) Earth Explorer. https://earthexplorer.usgs.gov/. Accessed 20 Mar 2018

  46. Van der Spek AJF, Beets DJ (1992) Mid-Holocene evolutionof a tidal basin in the western Netherlands: a model for futurechanges in the northern Netherlands under conditions of accel-erated sea-level rise? Sedimentary Geology 80:185–197. https://doi.org/10.1016/0037-0738(92)90040-X

    Article  Google Scholar 

  47. Vital H (2006) Erosão e Progradação no Litoral do Rio Grande do Norte. In: Muehe D. (org). Erosão e progradação do litoral brasileiro. Ministério do Meio Ambiente, Brasilia, pp 159–176

  48. Vital H (2009) The mesotidal barriers of Rio Grande do Norte. In: Dillemburg S, Hesp P (eds) Geology and geomorphology of Holocene coastal barriers of Brazil. Springer-Verlag, Heildelberg, pp 289–324

    Chapter  Google Scholar 

  49. Vital H, Stattegger K, Tabosa WF, Riedel K (2003) Why does erosion occur on the norteastern coast of Brazil: the Caiçara do Norte Beach example. Journal of Coastal Research 35:525–529

    Google Scholar 

  50. Vital H, Souza FE, Lima ZMC, Silveira IM, Amaro VE, Souto MVS, Chaves MS, Caldas LHO (2004) Shoreline mobility of Mesotidal Sandy beaches in the northeastern Brazil: implications to oil and gas exploration on the Potiguar Basin (NE Brazil). I: AAPG Annual Meetine Dallas, cd-rom

  51. Vital H, Neto FS, Plácido Júnior JS (2008a) Morfodinâmica de um canal de maré tropical:estudo de caso na costa norte riograndense, nordeste do Brasil. Revista Gest Costeira Integrada 8:113–126

  52. Vital H, Statteger K, Amaro VE, Schwarzer K, Frazão EP, Tabosa W, Silveira IM (2008b) A modern high-energy siliciclastic-carbonate plataforma: continental shelf adjacente to northern Rio Grande do Norte state, northeastern Brazil. Journal of Sedimentary Research 90:175–188

    Google Scholar 

  53. Vital H, Tabosa WF, Souza ZS, Farias PRC, Lima ZMC, Araujo PC (2013) Geologia e recursos minerais da folha Jandaíra SB.24-X-D-III: estado do Rio Grande do Norte. CPRM, Recife, 161 p

  54. Vital H, Silveira IM, Tabosa WF, Lima ZMC, Lima-Filho FP, Souza FES, Chaves MS, Pimenta FM, Gomes MP (2016) Beaches of Rio Grande do Norte. In: Short AD, Klein AHF (eds) Brazilian beach systems. Springer, Switzerland, pp 201–229

    Chapter  Google Scholar 

  55. Vital H, Silveira IM, Lima ZMC, Tabosa WF, Silva AGA, Soares FE, Gomes MP (2018) Rio Grande do Norte. In: Muehe D (ed) Panorama da erosão costeira no Brasil. Ministério do Meio Ambiente, Brasília, pp 289–325

    Google Scholar 

Download references

Acknowledgments

Thanks are due to the GGEMMA group for their survey support, as well as to the PPGG/UFRN for the academic and scientific infrastructure. This is a contribution of INCT AmbTropic – Brazilian National Institute of Science and Technology for Tropical Marine Environments 565054/2010-4, 8936/2011, and 465634/ 2014-1 (CNPq/FAPESB). Finally, we thank the reviewers, whose suggestions significantly improved this paper.

Funding

Funds for this research were provided by the Higher Education Personnel Improvement Coordination (CAPES) for funding the Master’s scholarship of the first author, the National Council for Scientific and Technological Development (CNPq) for a Research Fellowship (grant PQ 311413/2016–1) to the second author, and the project VALSA (CAPES PVE S).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Filipe Ezequiel da Silva.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 19 kb)

ESM 2

(DOCX 982 kb)

ESM 3

(DOCX 25 kb)

ESM 4

(GIF 3850 kb)

ESM 5

(GIF 7302 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

da Silva, F.E., Vital, H. Quantifying the high coastal dynamics of tropical mesotidal barrier island-spit systems: case study in Northeast Brazil. Geo-Mar Lett 40, 897–909 (2020). https://doi.org/10.1007/s00367-019-00610-1

Download citation

Keywords

  • Equatorial coast
  • Coastal erosion
  • Landsat images
  • Multitemporal analysis