Skip to main content

Advertisement

Log in

Geostatistical mapping of marine surficial sediment types in the Northern Aegean Sea using indicator kriging

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

A robust and accurate method is presented for the geostatistical mapping of marine grain-size data for the Aegean Sea, incorporating new grain-size data and making use of various marine-environmental proxy parameters for interpolation. This approach is based on an indicator kriging algorithm, which also considers marine environment parameters, such as bathymetry and sediment sourcing, through a co-kriging treatment. Data manipulation is carried out without the need of specialised software, in a geographic information system (GIS) environment, with the implementation of geostatistical analysis tools. The quality of the produced map was assessed based on MESH criteria, yielding a total score of 74%; comparison with other interpolation methods, such as IDW and local polynomials showed a better representation of the physical context of surficial sediments. The produced map, making use of all existing information from recent and legacy data, provides valuable information for the sedimentation of Northern Aegean continental shelf, an area of significant scientific interest for geomorphological, palaeoenvironmental and economic studies.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amiri K, Shabanipour N, Eagderi S (2017) Using kriging and co-kriging to predict distributional areas of Kilka species (Clupeonella spp.) in the southern Caspian Sea. Int J Aquat Biol 5:108–113

    Google Scholar 

  • Bockelmann FD, Puls W, Kleeberg U, Müller D, Emeis KC (2018) Mapping mud content and median grain-size of North Sea sediments - a geostatistical approach. Mar Geol 397:60–71. https://doi.org/10.1016/j.margeo.2017.11.003

    Article  Google Scholar 

  • Chica-Olmo M, Rodriguez F, Abarca F, Rigol-Sanchez J, deMiguel E, Gomez JA, Fernandez-Palacios A (2004) Integrated remote sensing and GIS techniques for biogeochemical characterization of the Tinto-Odiel estuary system, SW Spain. Environ Geol 45:834–842. https://doi.org/10.1007/s00254-003-0943-6

    Article  Google Scholar 

  • Diesing M, Green SL, Stephens D, Lark RM, Stewart HA, Dove D (2014) Mapping seabed sediments: comparison of manual, geostatistical, object-based image analysis and machine learning approaches. Cont Shelf Res 84:107–119. https://doi.org/10.1016/j.csr.2014.05.004

    Article  Google Scholar 

  • EMODnet Bathymetry Consortium (2016) EMODnet Digital Bathymetry (DTM). https://doi.org/10.12770/c7b53704-999d-4721-b1a3-04ec60c87238. Accessed 17 February 2016

  • ESRI (2011) ArcGIS desktop: release 10. Environmental Systems Research Institute, Redlands, CA

    Google Scholar 

  • Flemming BW (2000) A revised textural classification of gravel-free muddy sediments on the basis of ternary diagrams. Cont Shelf Res 20:1125–1137. https://doi.org/10.1016/S0278-4343(00)00015-7

    Article  Google Scholar 

  • Folk RL (1954) The distinction between grain size and mineral composition in sedimentary rock nomenclature. J Geol 62:344–359. https://doi.org/10.1086/626171

    Article  Google Scholar 

  • GIS Development Team (2016). QGIS geographic information system. Open Source Geospatial Foundation Project. http://qgis.osgeo.org. Accessed 12 Dec 2016

  • Ioakim C, Zananiri I, Zimianitis V, Efthymiou G, Vakalas I, Giamali C, Valaouris A, Drosopoulou E, Gidoni E, Economou G, Papatrechas C, Tarenidis D, Koutsovitis P, Xirokostas N, Sakalis M, Spiropoulos V, Patsis P, Tsapara E, Karagiorgis A, Roussakis G, H.C.M.R. research team (2016) Final comprehensive report of marine geology and sedimentology research in the Aegean Sea: work carried out in the frame of YPOTHER project. IGME report, Athens, p 339 http://igme.gr. Accessed 18 Dec 2016

  • Jenkins C (2007) Grid interpolation of seabed data. Institute for Arctic and Alpine Research, University of Colorado at Boulder. http://instaar.colorado.edu. Accessed 21 September 2016

  • Jerosch K (2013) Geostatistical mapping and spatial variability of surface sediment types on the Beaufort Shelf based on grain size data. J Mar Syst 127:5–13. https://doi.org/10.1016/j.jmarsys.2012.02.013

    Article  Google Scholar 

  • Journel AG (1983) Nonparametric estimation of spatial distributions. Math Geol 15(3):445–468. https://doi.org/10.1007/BF01031292

    Article  Google Scholar 

  • Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press, London, p 600

  • Kalos MH, Whitlock PA (1986) Monte Carlo Methods, 2nd edn (2008). Wiley-VCH, Weinheim, p 215

    Book  Google Scholar 

  • Kotilainen A, Kaskela A, Alanen U (2014) EMODnet - geology 2: WP3 sea-bed substrate, guidance document II, harmonisation and generalisation - appendix 1: generalisation with ArcGIS tools. Project Internal Report, Geological Survey of Finland, pp 1–16. http://tupa.gtk.fi/metaviite/seabed_substrate_250k_guidelines.pdf. Accessed 5 Jan 2016

  • Lark RM, Dove D, Green SL, Richardson AE, Stewart H, Stevenson A (2012) Spatial prediction of seabed sediment texture classes by cokriging from a legacy database of point observations. Sediment Geol 281:35–49. https://doi.org/10.1016/j.sedgeo.2012.07.009

    Article  Google Scholar 

  • Lark RM, Marchant BP, Dove D, Green SL, Diesing M (2015) Combining observations with acoustic swath bathymetry and backscatter to map seabed sediment texture classes: the empirical best linear unbiased predictor. Sediment Geol 328:17–32. https://doi.org/10.1016/j.sedgeo.2015.07.012

    Article  Google Scholar 

  • Lister A, Riemann R, Hoppus M (2001) A non-parametric geostatistical method for estimating species importance. In: Reams G, McRoberts R, Van Deusen P, eds (2001) Proceedings of the second annual forest inventory and analysis symposium; 2000 October 17–18; Salt Lake City, UT. Gen. Tech. Rep. SRS-47. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station: pp. 52–59. https://www.fs.usda.gov/treesearch/pubs/4526. Accessed 15 Dec 2015

  • Liu F, Peng J, Zhang C (2012) A non-parametric indicator kriging method for generating coastal sediment type map. Mar Sci Bull 14(1):57–67 http://hdl.handle.net/1834/5835. Accessed 15 Dec 2015

  • Maljers D, Gunnink J (2011) Interpolation of measured grain-size fractions. http://www.coastalwiki.org/Interpolation_of_measured_grain-size_fractions. Accessed 21 September 2016

  • McBreen F, Askew N (2011) UKSeaMAP 2010 technical report 3: substrate data. Joint Nature Conservation Committee, Peterborough, p 43. http://jncc.defra.gov.uk/pdf/UKSeaMap2010_TechnicalReport_3_Substrate2.pdf. Accessed 17 Oct 2018

  • MESH Project (2008) MESH confidence assessment. Online resource available at: http://www.emodnet-seabedhabitats.eu/default.aspx?page=1635. Accessed 18 March 2016

  • Mitropoulos D, Angelopoulos I, Perissoratis K, Zimianitis V (1994) Surficial sediment map of the bottom of the Aegean Sea in scale 1:200000, N. Sporadhes Sheet. IGME Publications, Athens

  • Panagiotopoulos IP, Kapsimalis V, Ioakim CHR, Karageorgis A, Rousakis G, Morfis I, Hatiris GA, Anagnostou C, Koukoulis A, Papatrechas CH, Koutsovitis PD, Economou G, Tsapara E, Kyriakidou C (2016) High-resolution geomorphological mapping of the shallow continental shelf west of the Kavala bay, North Aegean. Bulletin of the Geological Society of Greece, Proceedings of the 14th International Congress, Thessaloniki, L-1:448–457

  • Pawlowsky-Glahn V, Olea RA (2004) Geostatistical analysis of compositional data. Studies in mathematical geology no.7. Oxford University Press, New York, p 304

    Google Scholar 

  • Perissoratis C, Angelopoulos I, Mitropoulos D (1987) Exploring the offshore area of N.E. Greece for placer deposits: geologic framework and preliminary results, in: Teleki PG et al. (Eds), Marine minerals, NATO ASI Series 194:57–70. https://doi.org/10.1007/978-94-009-3803-8_6

    Chapter  Google Scholar 

  • Perissoratis C, Mitropoulos D, Angelopoulos I (1988) Surficial sediment map of the bottom of the Aegean Sea in scale 1:200000, Ierissos-Kavala sheet. IGME Publications, Athens

    Google Scholar 

  • Raper J, Livingston D, Bristow C, McCarthy T (2003) Constructing a geomorphological database of coastal change using GIS. In: Green D, King D (eds) Coastal and marine geoinformation systems. Kluwer Academic Publishers, Netherlands, pp 399–413. https://doi.org/10.1007/0-306-48002-6_28

    Chapter  Google Scholar 

  • Shepard FP (1954) Nomenclature based on sand-silt-clay ratios. J Sediment Petrol 24:151–158. https://doi.org/10.1306/D4269774-2B26-11D7-8648000102C1865D

    Article  Google Scholar 

  • Stephens D, Coggan R, Diesing M (2011) Geostatistical modelling of surficial sediment composition in the North Sea and English Channel: using historical data to improve confidence in seabed habitat maps. In: 2011 ICES Annual Science Conference. Gdańsk, Poland, pp 1–8

    Google Scholar 

  • Sterk R, Stein JK (2015) Seabed mineral deposits: an overview of sampling techniques and future developments. Paper presented to: Deep Sea Mining Summit, Aberdeen, Scotland, 9-10 February 2015, 29

  • Thorsnes T, van Son TH, Dolan M, Gonzalez-Mirelis G, Baeten N, Buhl-Mortensen P, Bjamodottir LR, Hodnesdal H, Bellec V (2015) An assessment of scale, sampling effort and confidence for maps based on visual and acoustic data in MAREANO. NGU Report, Nr 2015(043):97. http://www.ngu.no/upload/Publikasjoner/Rapporter/2015/2015_043.pdf. Accessed 17 Oct 2018

  • Van Heteren S, Van Lancker V (2015) Collaborative seabed-habitat mapping: uncertainty in sediment data as an obstacle in harmonization. In: Diviacco P, Fox P, Pshenichny C, Leadbetter A (eds) Collaborative knowledge in scientific research networks. IGI Global, Hershey, Pennsylvania (USA), pp 154–176. https://doi.org/10.4018/978-1-4666-6567-5.ch008

    Chapter  Google Scholar 

  • Verfaille E, van Lancker V, van Meirvenne M (2006) Multivariate geostatistics for the predictive modelling of the surficial sand distribution in shelf areas. Cont Shelf Res 26(19):2454–2468. https://doi.org/10.1016/j.csr.2006.07.028

    Article  Google Scholar 

  • Wentworth CK (1922) A scale of grade and class terms for clastic sediments. J Geol 30(5):377–392. https://doi.org/10.1086/622910

    Article  Google Scholar 

  • Zananiri I, Mitropoulos D, Zimianitis V, Ioakim CHR, Papadopoulos V, Efthimiou G (2013) Marine geology data accessibility in the European Framework: the I.G.M.E. participation in the Geo-Seas project. Bulletin of the Geological Society of Greece, Proceedings of the 13th International Congress, Chania, XLVII-2:1590–1597. https://doi.org/10.12681/bgsg.11003

    Article  Google Scholar 

  • Zananiri I, Mitropoulos D, Maroulakis S, Zimianitis V, Vakalas I, Liakopoulos A, Efthymiou G (2016a) Bathymetry, sedimentology and geochemistry study of the harbour of Igoumenitsa and the broader marine area. IGME report, Athens, p 309. www.igme.gr. Accessed 21 Aug 2016

  • Zananiri I, Vakalas I, Mitropoulos D, Zimianitis V (2016b) The application of GIS methods and techniques for the elaboration of surficial sediment maps of the bottom of the Aegean Sea: Ierissos - Kavala sheet. IGME report, Athens, p 32 www.igme.gr. Accessed 21 Aug 2016

Download references

Acknowledgements

Used data were collected in the frame of the Research and Development programme of the European Communities (E.E.E., 1984-1989) and the NSRF/Operational Programme Competitiveness & Entrepreneurship (2013-2015), project No.351008 (‘YPOTHER: Marine geology and mineral research study along the coastline between Chalkidiki and Kavala and the caldera of Santorini’). The authors would like to thank the geologist D. Mitropoulos for fruitful discussions and providing helpful advice on marine sediment mapping. Prof. S. van Heteren and the editor Prof. A. Green are greatly acknowledged for their constructive reviews which substantially improved this manuscript.

Funding

Part of this work has been carried out through the support of European Commission contract No.SI2.658129 (‘European Marine Observation and Data Network–Lot 2 Geology’).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Zananiri.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zananiri, I., Vakalas, I. Geostatistical mapping of marine surficial sediment types in the Northern Aegean Sea using indicator kriging. Geo-Mar Lett 39, 363–376 (2019). https://doi.org/10.1007/s00367-019-00581-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-019-00581-3

Navigation