Advertisement

Geo-Marine Letters

, Volume 39, Issue 3, pp 249–264 | Cite as

Geomorphological and sedimentological surrogates for the understanding of seagrass distribution within a temperate nearshore setting (Esperance Western Australia)

  • Sira Tecchiato
  • Carla BuosiEmail author
  • Angelo Ibba
  • Claudio Del Deo
  • Iain Parnum
  • Mick O’Leary
  • Sandro De Muro
Original
  • 51 Downloads

Abstract

Seagrass meadows are important benthic habitats contributing to many aspects of ecological community health, beach stability and sediment supply. Relationships between morpho-sedimentary features and distribution of seagrass meadows were investigated through an integrated analysis of geomorphology, sediments and benthic habitat structure in a temperate nearshore setting (Esperance Bay, Western Australia). The results demonstrate that seagrass distribution is related to gradients in sediment texture and composition, hydrodynamics and human impact. Dense seagrass meadows occurred in more sheltered regions of the bay, whereas sparser vegetation was found in areas of higher wave energy and artificial activities (like ship anchoring and dredging activities). A preferential retention of heavier siliciclastic sediments was recorded in the seagrass meadows especially in areas with high sediment supply resulting in elevated beds and formation of intermates. Sediment characteristics suggest that carbonate sediment is transported onshore from the seagrass meadow supplying the beach system. The combined analyses of geomorphological features and sediment characteristics at Esperance have allowed identification of a prevalent eastward oriented sediment transport current. Seagrass beds are confirmed to be a sediment source in terms of sediment budget contributing to beach stability. Integrated geomorphological data, sediment analyses and benthic habitat mapping provide useful information for the management of coastal environments characterized by the presence of seagrass meadows by providing new insights on coastal processes.

Notes

Acknowledgements

This paper is the result of a collaborative project between Curtin University and the University of Cagliari. The authors are grateful for the support of the Department of Park and Wildlife (Esperance District), especially Mr. Stephen Butler for fieldwork support. The first author would like to thank the Department of Transport for project support. The authors warmly thank Karin Bryan (editor in chief) and two anonymous reviewers for their criticism and helpful suggestions, which improved the manuscript.

Funding information

This research project was funded by the University of Cagliari with the support of a Western Australian Department of Transport CAP grant to the Shire of Esperance. This work is a part of NEPTUNE and BEACH projects (funded by Regione Autonoma Sardegna under L.R. 7/2007) and “Relationship between seagrass distribution and coastal erosion at Esperance (WA)” project.

References

  1. Ashley GM (1990) Classification of large-scale subaqueous bedforms: a new look at an old problem. J Sediment Petrol 60(1):160–172CrossRefGoogle Scholar
  2. Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169–193.  https://doi.org/10.1890/10-1510.1 CrossRefGoogle Scholar
  3. Bartole R, De Muro S (2012) Acoustic facies and seabed features of the mixed carbonate-siliciclastic deposits of the last eustatic cycle in the La Maddalena archipelago (North Sardinia, Italy). Ital J Geosci 131:102–122.  https://doi.org/10.3301/IJG.2011.28 Google Scholar
  4. Boudouresque CF, Bernard G, Bonhomme P, Charbonnel E, Diviacco G, Meinesz A, Pergent G, Pergent-Martini C, Ruitton S, Tunesi L (2012) Protection and conservation of Posidonia oceanica meadows. RAMOGE pub., TunisGoogle Scholar
  5. Brambilla W, van Rooijen A, Simeone S, Ibba A, De Muro S (2016) Field observations, coastal video monitoring and numerical modeling at Poetto Beach, Italy. J Coast Res 75(2):825–829.  https://doi.org/10.2112/SI75-166.1 CrossRefGoogle Scholar
  6. Brown CJ, Cooper KM, Meadows WJ, Limpenny DS, Rees HL (2002) Small- scale mapping of sea-bed assemblages in the eastern English Channel using sidescan sonar and remote sampling techniques. Estuar Coast Shelf Sci 54(2):263–278.  https://doi.org/10.1006/ecss.2001.0841 CrossRefGoogle Scholar
  7. Buosi C, Tecchiato S, Pusceddu N, Frongia P, Ibba A, De Muro S (2017) Geomorphology and sedimentology of Porto Pino, SW Sardinia, western Mediterranean. J Maps 13(2):470–485  https://doi.org/10.1080/17445647.2017.1328318 CrossRefGoogle Scholar
  8. Cann JH, Clarke JDA (1993) The significance of Marginopora vertebralis (foraminifera) in surficial sediments at Esperance, Western Australia, and in last interglacial sediments in northern Spencer gulf, South Australia. Mar Geol 111:171–187CrossRefGoogle Scholar
  9. Carruthers TJB, Dennison WC, Kendrick GA, Waycott M, Walker DI, Cambridge ML (2007) Seagrasses of southwest Australia: a conceptual synthesis of the world's most diverse and extensive seagrass meadows. J Exp Mar Biol Ecol 350(1):21–45.  https://doi.org/10.1016/j.jembe.2007.05.036 CrossRefGoogle Scholar
  10. Cochrane GR, Lafferty KD (2002) Use of acoustic classification of sidescan sonar data for mapping benthic habitat in the Northern Channel Islands, California. Cont Shelf Res 22(5):683–690.  https://doi.org/10.1016/S0278-4343(01)00089-9 CrossRefGoogle Scholar
  11. De Boer WF (2007) Seagrass–sediment interactions, positive feedbacks and critical thresholds for occurrence: a review. Hydrobiologia 591(1):5–24CrossRefGoogle Scholar
  12. De Falco G, Ferrari S, Cancemi G, Baroli M (2000) Relationship between sediment distribution and Posidonia oceanica seagrass. Geo-Mar Lett 20(1):50–57CrossRefGoogle Scholar
  13. De Falco G, Tonielli R, Di Martino G, Innangi S, Simeone S, Parnum IM (2010) Relationships between multibeam backscatter, sediment grain size and Posidonia oceanica seagrass distribution. Cont Shelf Res 30(18):1941–1950.  https://doi.org/10.1016/j.csr.2010.09.006 CrossRefGoogle Scholar
  14. De Falco G, De Muro S, Batzella T, Cucco A (2011) Carbonate sedimentation and hydrodynamic pattern on a modern temperate shelf: the strait of Bonifacio (western Mediterranean). Estuar Coast Shelf Sci 93(1):14–26.  https://doi.org/10.1016/j.ecss.2011.03.013 CrossRefGoogle Scholar
  15. De Muro S, Batzella T, Kalb C, Pusceddu N (2008) Sedimentary processes, hydrodynamics and modeling of the beaches of Santa Margherita, Solanas, Cala di Trana and La Sciumara (Sardinia – Italy). Rend Online Soc Geol Ital 3(1):308–309Google Scholar
  16. De Muro S, Batzella T, De Falco G, Porta M (2010a) Sedimentological map of Bonifacio Strait inner shelf. Rend Online Soc Geol Ital 11(2):752–753Google Scholar
  17. De Muro S, Kalb C, Ibba A, Ferraro F, Ferrara C (2010b) Sedimentary processes, morphodynamics and sedimentological map of “Porto Campana” SCI beaches (Domus De Maria - SW Sardinia). Rend Online Soc Geol Ital 11(2):754–755Google Scholar
  18. De Muro S, Pusceddu N, Kalb C (2010c) Sedimentological map of the seafloor between Porto Pozzo Bay and capo Ferro - NE Sardinia. Rend Online Soc Geol Ital 11(2):756–757Google Scholar
  19. De Muro S, Ibba A, Simeone S, Buosi C, Brambilla W (2017a) An integrated sea-land approach for mapping geomorphological and sedimentological features in an urban microtidal wave-dominated beach: a case study from S Sardinia, western Mediterranean. J Maps 13(2):822–835.  https://doi.org/10.1080/17445647.2017.1389309 CrossRefGoogle Scholar
  20. De Muro S, Porta M, Passarella M, Ibba A (2017b) Geomorphology of four wave- dominated microtidal Mediterranean beach systems with Posidonia oceanica meadow: a case study of the northern Sardinia coast. J Maps 13(2):74–85.  https://doi.org/10.1080/17445647.2016.1259593 CrossRefGoogle Scholar
  21. De Muro S, Pusceddu N, Buosi C, Ibba A (2017c) Morphodynamics of a Mediterranean microtidal wave-dominated beach: forms, processes and insights for coastal management. J Maps 13(2):26–36.  https://doi.org/10.1080/17445647.2016.1250681 CrossRefGoogle Scholar
  22. De Muro S, Porta M, Pusceddu N, Frongia P, Passarella M, Ruju A, Buosi C, Ibba A (2018) Geomorphological processes of a Mediterranean urbanized beach (Sardinia, Gulf of Cagliari). J Maps 14(2):114–122.  https://doi.org/10.1080/17445647.2018.1438931 CrossRefGoogle Scholar
  23. Defeo O, McLachlan A, Schoeman D, Schlacher T, Dugan J, Jones A, Lastra M, Scapini F (2009) Threats to sandy beach ecosystems: a review. Estuar Coast Shelf Sci 81:1–12.  https://doi.org/10.1016/j.ecss.2008.09.022 CrossRefGoogle Scholar
  24. Duarte CM (2002) The future of seagrass meadows. Environ Conserv 29(2):192–206.  https://doi.org/10.1017/S0376892902000127 CrossRefGoogle Scholar
  25. Duarte CM, Kennedy H, Marbà N, Hendriks I (2013) Assessing the capacity of seagrass meadows for carbon burial: current limitations and future strategies. Ocean Coast Manag 83:32–38.  https://doi.org/10.1016/j.ocecoaman.2011.09.001 CrossRefGoogle Scholar
  26. Folk RL, Ward WC (1957) Brazos river bar: a study in the significance of grain size parameters. J Sediment Petrol 27:3–26CrossRefGoogle Scholar
  27. Gacia E, Duarte C (2001) Sediment retention by a Mediterranean Posidonia oceanica meadow: the balance between deposition and resuspension. Estuar Coast Shelf Sci 52(4):505–514.  https://doi.org/10.1006/ecss.2000.0753 CrossRefGoogle Scholar
  28. Gacia E, Granata TC, Duarte CM (1999) An approach to measurement of particle flux and sediment retention within seagrass (Posidonia oceanica) meadows. Aquat Bot 65(1–4):255–268.  https://doi.org/10.1016/S0304-3770(99)00044-3 CrossRefGoogle Scholar
  29. Goff JA, Kraft BJ, Mayer LA, Schock SG, Sommerfield CK, Olson HC, Gulick SPS, Nordfjord S (2004) Seabed characterization on the New Jersey middle and outer shelf: Correlatability and spatial variability of seafloor sediment properties. Mar Geol 209(1–4):147–172.  https://doi.org/10.1016/j.margeo.2004.05.030 CrossRefGoogle Scholar
  30. Gómez-Pujol L, Roig-Munar FX, Fornós JJ, Balaguer P, Mateu J (2013) Provenance-related characteristics of beach sediments around the island of Menorca, Balearic Islands (western Mediterranean). Geo-Mar Lett 33(2–3):195–208.  https://doi.org/10.1007/s00367-012-0314-y CrossRefGoogle Scholar
  31. Gostin VA, Belperio AP, Cann JH (1988) The Holocene non-tropical coastal and shelf carbonate province of southern Australia. Sediment Geol 60:51–70CrossRefGoogle Scholar
  32. Harris PT, Hughes MG (2012) Predicted benthic disturbance regimes on the Australian continental shelf: a modelling approach. Mar Ecol Prog Ser 449:13–25.  https://doi.org/10.3354/meps09463 CrossRefGoogle Scholar
  33. Hemminga M, Duarte CM (2000) Seagrass ecology. Cambridge University PressGoogle Scholar
  34. Hendriks IE, Sintes T, Bouma TJ, Duarte CM (2008) Experimental assessment and modeling evaluation of the effects of the seagrass Posidonia oceanica on flow and particle trapping. Mar Ecol Prog Ser 356:163–173.  https://doi.org/10.3354/meps07316 CrossRefGoogle Scholar
  35. Infantes E, Terrados J, Orfila A, Canellas B, Alvarez-Ellacuria A (2009) Wave energy and the upper depth limit distribution of Posidonia oceanica. Bot Mar 52:419–427.  https://doi.org/10.1515/BOT.2009.050 CrossRefGoogle Scholar
  36. James NP, Bone Y, Collins LB, Kyser TK (2001) Surficial sediments of the Great Australian Bight: facies dynamics and oceanography on a vast cool-water carbonate shelf. J Sediment Res 71:549–567.  https://doi.org/10.1306/102000710549 CrossRefGoogle Scholar
  37. Kendall MS, Jensen OP, Alexander C, Field D, McFall G, Bohne R, Monaco ME (2005) Benthic mapping using sonar, video transects, and an innovative approach to accuracy assessment: a characterization of bottom features in the Georgia Bight. J Coast Res 21:1154–1165.  https://doi.org/10.2112/03-0101R.1 CrossRefGoogle Scholar
  38. Koch EW, Ackerman JD, Verduin J, Keulen MV (2006) Fluid dynamics in seagrass ecology-from molecules to ecosystems. Seagrasses: biology, ecology and conservation, pp 193–225.  https://doi.org/10.1007/978-1-4020-2983-7_8
  39. Leriche A, Pasqualini V, Boudouresque CF, Bernard G, Bonhomme P, Clabaut P, Denis J (2006) Spatial, temporal and structural variations of a Posidonia oceanica seagrass meadow facing human activities. Aquat Bot 84(4):287–293.  https://doi.org/10.1016/j.aquabot.2005.10.001 CrossRefGoogle Scholar
  40. Levin N, Coll M, Fraschetti S, Gal G, Giakoumi S, Göke C, Heymans JJ, Katsanevakis S, Mazor T, Öztürk B, Rilov G, Gajewski J, Steenbeek J, Kark S (2014) Biodiversity data requirements for systematic conservation planning in the Mediterranean Sea. Mar Ecol Prog Ser 508:261–281.  https://doi.org/10.3354/meps10857 CrossRefGoogle Scholar
  41. Mateu-Vicens G, Brandano M, Gaglianone G, Baldassarre A (2012) Seagrass-meadow sedimentary facies in a mixed siliciclastic-carbonate temperate system in the Tyrrhenian Sea (Pontinian Islands, Western Mediterranean). J Sediment Res 82(7):451–463.  https://doi.org/10.2110/jsr.2012.42 CrossRefGoogle Scholar
  42. McArthur MA, Brooke BP, Przeslawski R, Ryan DA, Lucieer VL, Nichol S, McCallum AW, Mellin C, Cresswell ID, Radke LC (2010) On the use of abiotic surrogates to describe marine benthic biodiversity. Estuar Coast Shelf Sci 88(1):21–32.  https://doi.org/10.1016/j.ecss.2010.03.003 CrossRefGoogle Scholar
  43. McMahon K, Lavery P, McCallum R, Hernawan U (2017) Current state of knowledge regarding the effects of dredging-related ‘pressure’ on seagrasses. Report of Theme 5 - Project 5.1.1 prepared for the Dredging Science Node, Western Australian Marine Science Institution, Perth, Western Australia, 64 ppGoogle Scholar
  44. Montefalcone M, Vacchi M, Carbone C, Cabella R, Schiaffino CF, Elter FM, Morri C, Bianchi CN, Ferrari M (2016) Seagrass on the rocks: Posidonia oceanica settled on shallow-water hard substrata withstands wave stress beyond predictions. Estuar Coast Shelf Sci 180:114–122.  https://doi.org/10.1016/j.ecss.2016.06.024 CrossRefGoogle Scholar
  45. Moura RL, Secchin NA, Amado-Filho GM, Francini-Filho RB, Freitas MO, Minte-Vera CV, Teixeira JB, Thompson FL, Dutra GF, Sumida PYG, Guth AZ, Lopes RM (2013) Spatial patterns of benthic megahabitats and conservation planning in the Abrolhos Bank. Cont Shelf Res 70:109–117.  https://doi.org/10.1016/j.csr.2013.04.036 CrossRefGoogle Scholar
  46. Parnum IM (2007) Benthic habitat mapping using multibeam sonar systems PhD thesis. Curtin University, Perth, Western Australia, Australia. https://espace.curtin.edu.au/handle/20.500.11937/1131
  47. Parnum IM, Ellement T, Perry MA, Parsons MJG, Tecchiato S (2017) Using recreational echo-sounders for marine science studies. Proceedings of the acoustic 2017 Conference, Perth, Western Australia, AustraliaGoogle Scholar
  48. Pergent G, Monnier B, Clabaut P, Gascon G, Pergent-Martini C, Valette A (2017) Innovative method for optimizing side-scan sonar mapping: the blind band unveiled. Estuar Coast Shelf Sci 194:77–83.  https://doi.org/10.1016/j.ecss.2017.05.016 CrossRefGoogle Scholar
  49. Potouroglou M, Bull JC, Krauss KW, Kennedy HA, Fusi M, Daffonchio D, Mangora MM, Githaiga MN, Diele K, Huxham M (2017) Measuring the role of seagrasses in regulating sediment surface elevation. Sci Rep 7. Article number: 1191.  https://doi.org/10.1038/s41598-017-12354-y
  50. Pusceddu N, Batzella T, Kalb C, Ferraro F, Ibba A, De Muro S (2011) Short-term evolution of the Budoni beach on NE Sardinia (Italy). Rend Online Soc Geol Ital 17:155–159.  https://doi.org/10.3301/ROL.2011.45 Google Scholar
  51. Ruju A, Ibba A, Porta M, Buosi C, Passarella M, De Muro S (2018) The role of hydrodynamic forcing, sediment transport processes and bottom substratum in the shoreward development of Posidonia oceanica meadow. Estuar Coast Shelf Sci 212:63–72.  https://doi.org/10.1016/j.ecss.2018.06.025 CrossRefGoogle Scholar
  52. Ryan DA, Brooke BP, Collins LB, Kendrick GA, Baxter KJ, Bickers AN, Siwabessy PJW, Pattiaratchi CB (2007) The influence of geomorphology and sedimentary processes on shallow-water benthic habitat distribution: Esperance Bay, Western Australia. Estuar Coast Shelf Sci 72(1):379–386.  https://doi.org/10.1016/j.ecss.2006.10.008 CrossRefGoogle Scholar
  53. Ryan DA, Brooke BP, Collins LB, Spooner MI, Siwabessy PJW (2008) Formation, morphology and preservation of high-energy carbonate lithofacies: evolution of the cool-water Recherche archipelago inner shelf, South-Western Australia. Sediment Geol 207:41–55.  https://doi.org/10.1016/j.sedgeo.2008.03.007 CrossRefGoogle Scholar
  54. Sanderson PG, Eliot I, Hegge B, Maxwell S (2000) Regional variation of coastal morphology in southwestern Australia: a synthesis. Geomorphology 34:73–88.  https://doi.org/10.1016/S0169-555X(99)00132-4 CrossRefGoogle Scholar
  55. Short AD (2006) Australian beach systems – nature and distribution. J Coast Res 22(1):11–27.  https://doi.org/10.2112/05A-0002.1 CrossRefGoogle Scholar
  56. Short AD (2010) Sediment transport around Australia – sources, mechanisms, rates, and barrier forms. J Coast Res 26(3):395–402.  https://doi.org/10.2112/08-1120.1 CrossRefGoogle Scholar
  57. Short F, McKenzie LJ, Coles RG, Vidler KP (2002) Seagrassnet manual for scientific monitoring of seagrass habitat. Queensland Department of Primary Industry, Queensland Fisheries Service, Cairns, pp 56Google Scholar
  58. Short F, Carruthers T, Dennison W, Waycott M (2007) Global seagrass distribution and diversity: a bioregional model. J Exp Mar Biol Ecol 350(1):3–20.  https://doi.org/10.1016/j.jembe.2007.06.012 CrossRefGoogle Scholar
  59. Simeone S, De Muro S, De Falco G (2013) Seagrass berm deposition on a Mediterranean embayed beach. Estuar Coast Shelf Sci 135:171–181.  https://doi.org/10.1016/j.ecss.2013.10.007 CrossRefGoogle Scholar
  60. Stevens AW, Lacy JR (2012) The influence of wave energy and sediment transport on seagrass distribution. Estuar Coasts 35(1):92–108.  https://doi.org/10.1007/s12237-011-9435-1 CrossRefGoogle Scholar
  61. Tecchiato S (2014) Sediment dynamics of a temperate water carbonate system of the Midwestern Australian coast. PhD Thesis, Curtin UniversityGoogle Scholar
  62. Tecchiato S, Collins L, Parnum I, Stevens A (2015) The influence of geomorphology and sedimentary processes on benthic habitat distribution and littoral sediment dynamics: Geraldton, Western Australia. Mar Geol 359:148–162.  https://doi.org/10.1016/j.margeo.2014.10.005 CrossRefGoogle Scholar
  63. Tecchiato S, Buosi C, Ibba A, Ryan DA, De Muro S (2016a) A comparison of geomorphic settings, sediment facies and benthic habitats of two carbonate systems of western Mediterranean Sea and South Western Australia: implications for coastal management. J Coast Res 75:562–566.  https://doi.org/10.2112/SI75-113.1 CrossRefGoogle Scholar
  64. Tecchiato S, Collins L, Stevens A, Soldati M, Pevzner R (2016b) Carbonate sediment dynamics and compartmentalisation of a highly modified coast: Geraldton, Western Australia. Geomorphology 254:57–72.  https://doi.org/10.1016/j.geomorph.2015.11.014 CrossRefGoogle Scholar
  65. Vacchi M, Montefalcone M, Bianchi CN, Morri C, Ferrari M (2010) The influence of coastal dynamics on the upper limit of the Posidonia oceanica meadow. Mar Ecol 31(4):546–554.  https://doi.org/10.1111/j.1439-0485.2010.00377.x CrossRefGoogle Scholar
  66. Vacchi M, Montefalcone M, Schiaffino CF, Parravicini V, Bianchi CN, Morri C, Ferrari M (2014) Towards a predictive model to assess the natural position of the Posidonia oceanica seagrass meadows upper limit. Mar Pollut Bull 83:458–466.  https://doi.org/10.1016/j.marpolbul.2013.09.038 CrossRefGoogle Scholar
  67. Vacchi M, De Falco G, Simeone S, Montefalcone M, Morri C, Ferrari C, Bianchi CN (2017) Biogeomorphology of the Mediterranean Posidonia oceanica seagrass meadows. Earth Surf Process Landf 42(1):42–54.  https://doi.org/10.1002/esp.3932 CrossRefGoogle Scholar
  68. Wentworth CK (1922) A scale of grade and class terms for clastic sediments. J Geol 30:377–392CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Environment & AgricultureCurtin UniversityPerthAustralia
  2. 2.BMT Western AustraliaOsborne ParkAustralia
  3. 3.Department of Chemical and Geological Sciences, Coastal and Marine Geomorphology Group (CMGG)Università degli Studi di CagliariMonserratoItaly
  4. 4.Advisian Pty LtdPerthAustralia
  5. 5.Centre for Marine Science & TechnologyCurtin UniversityPerthAustralia

Personalised recommendations