Geo-Marine Letters

, Volume 37, Issue 6, pp 579–591 | Cite as

Early Holocene estuary development of the Hesselø Bay area, southern Kattegat, Denmark and its implication for Ancylus Lake drainage

  • Carina Bendixen
  • Lars Ole Boldreel
  • Jørn Bo Jensen
  • Ole Bennike
  • Christian Hübscher
  • Ole Rønø Clausen


High-resolution shallow seismic data, sediment core information, radiocarbon dating and sequence stratigraphy have been used to interpret the late glacial to early Holocene geological evolution of Hesselø Bay in the southern Kattegat, Denmark. A reconstruction of the early Holocene coastal environment and a description of coastal processes associated with a river outlet into the bay are presented. Weichselian glacial deposits form the lowermost interpreted unit, covered by late glacial (LG) and postglacial (PG, Holocene) sediments. A funnel-shaped estuary existed at the mouth of channels in the period 10.3–9.2 cal. ka BP; the channels drained water from south to north. The early PG is characterised by estuarine and coastal deposits. The early Holocene bars that developed in the estuary are preserved as morphological features on the present-day seabed, possibly as a result of rapid relative sea-level rise. The estuary existed simultaneously with the occurrence and drainage of the Ancylus Lake. The drainage of this lake occurred through the Dana River (palaeo-Great Belt channel) into the southern Kattegat and then into the study area. The level of the Ancylus Lake in the Baltic Sea region dropped significantly at about 10.2 cal. ka BP at the same time as the estuary developed in the Kattegat region. One outcome of the present study is an enhanced understanding of the Ancylus Lake drainage path. No evidence of major erosion is seen, which indicates non-catastrophic continuous water flow from the south without major drainage events of the Ancylus Lake to the southern Kattegat. During the Littorina transgression, coastal estuarine conditions characterized the Hesselø Bay area where elongated ridges formed a bar system. As the Littorina transgression continued, back-stepping of the bar system and coastline occurred. When the transgression breached the Great Belt threshold, flooding caused major erosion throughout the study area.



We thank the captains and crews of RV Ocean Surveyor, RV Alkor, RV Alexander von Humboldt, MV Laura and RV Maria Merian (cruise MSM51-1) for practical assistance during the work at sea. The work was part of the DAN-IODP-SEIS project financed by Geocenter Denmark. Schlumberger is thanked for their university grant license for Petrel at the Department of Geosciences and Natural Resource Management, Geology section, University of Copenhagen. This paper is published with the permission of the Geological Survey of Denmark and Greenland. We further wish to thank two anonymous reviewers as well as the editors for constructive comments on the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest with third parties.


  1. Andrén T, Björck S, Andrén E, Conley D, Zillén L, Anjar J (2011) The development of the Baltic Sea basin during the last 130 ka. In: Harff J, Björck S, Hoth P (eds) The Baltic Sea basin. Springer, Heidelberg, pp 75–97CrossRefGoogle Scholar
  2. Bendixen C, Jensen JB, Bennike O, Boldreel LO (2013) Late glacial to early Holocene development of southern Kattegat. Geol Surv Denmark Greenl Bull 28:21–24Google Scholar
  3. Bendixen C, Jensen JB, Boldreel LO, Clausen OR, Bennike O, Seidenkrantz M-S, Nyberg J, Hübscher C (2017) The Holocene Great Belt connection to the southern Kattegat, Scandinavia: Ancylus Lake drainage and early Littorina Sea transgression. Boreas 46:53–68. doi: 10.1111/bor.12154 CrossRefGoogle Scholar
  4. Benn DI, Evans DJA (1996) The interpretation and classification of subglacially-deformed materials. Quat Sci Rev 15:23–52. doi: 10.1016/0277-3791(95)00082-8 CrossRefGoogle Scholar
  5. Bennike O, Jensen JB, Konradi PB, Lemke W, Heinemeier J (2000) Early Holocene drowned lagoonal deposits from the Kattegat, southern Scandinavia. Boreas 29:272–286. doi: 10.1111/j.1502-3885.2000.tb01210.x CrossRefGoogle Scholar
  6. Bennike O, Jensen JB, Lemke W, Kuijpers A, Lomholt S (2004) Late- and postglacial history of the Great Belt, Denmark. Boreas 33:18–33. doi: 10.1080/03009480310006952 CrossRefGoogle Scholar
  7. Berglund BE, Sandgren P, Barnekow L, Hannon G, Jiang H, Skog G, Yu SY (2004) Early Holocene history of the Baltic Sea, as reflected in coastal sediments in Blekinge, southeastern Sweden. Quat Int 130:111–139. doi: 10.1016/j.quaint.2004.04.036 CrossRefGoogle Scholar
  8. Bergsten H, Nordberg K (1992) Late Weichselian marine stratigraphy of the southern Kattegat, Scandinavia: evidence for drainage of the Baltic ice Lake between 12,700 and 10,300 years BP. Boreas 21:223–252CrossRefGoogle Scholar
  9. Bergsten H, Nordberg K (1993) Middel Weichselian marine sediments from eastern Kattegat, Scandinavia. Boreas 22:311–318CrossRefGoogle Scholar
  10. Björck S (1995) A review of the history of the Baltic Sea, 13.0-8.0 ka BP. Quat Int 27:19–40CrossRefGoogle Scholar
  11. Björck S (2008) The late quaternary development of the Baltic Sea basin. In: The BACC Author Team (ed) Assessment of climate changes for the Baltic Sea basin. Springer, Berlin, pp 398–407Google Scholar
  12. Björck S, Andrén T, Jensen JB (2008) An attempt to resolve the partly conflicting data an ideas on the Ancylus-Littorina transition. Polish Geol Inst Spec Pap 23:21–26Google Scholar
  13. Brenner WW (2005) Holocene environmental history of the Gotland Basin (Baltic Sea)—a micropalaeontological model. Palaeogeogr Palaeoclimatol Palaeoecol 220:227–241CrossRefGoogle Scholar
  14. Catuneanu O (2006) Principles of sequence stratigraphy. Elsevier, AmsterdamGoogle Scholar
  15. Catuneanu O, Galloway WE, Kendall CGSC, Miall AD, Posamentier HW, Strasser A, Tucker ME (2011) Sequence stratigraphy: methodology and nomenclature. Newsl Stratigr 44:173–245CrossRefGoogle Scholar
  16. Christiansen C, Conradsen K, Emelyanov E, Trimonis E, Heinemeier J, Rud N (1993) Hydrographic changes in the southern Kattegat (Scandinavia) during the early Holocene transgression. Boreas 22:349–356CrossRefGoogle Scholar
  17. Conradsen K (1995) Late Younger Dryas to Holocene palaeoenvironments of the southern Kattegat, Scandinavia. The Holocene 5:447–456. doi: 10.1177/095968369500500407 CrossRefGoogle Scholar
  18. Conradsen K, Heier-Nielsen S (1995) Holocene palaeoceanography and palaeoenvironments of the Skagerak-Kattegat, Scandinavia. Paleoceanography 10:801–813CrossRefGoogle Scholar
  19. Erbs-Hansen DR, Knudsen KL, Gary AC, Jansen E, Gyllencreutz R, Scao V, Lambeck K (2011) Late Younger Dryas and early Holocene palaeoenvironments in the Skagerrak, eastern North Atlantic: a multiproxy study. Boreas 40:660–680. doi: 10.1111/j.1502-3885.2011.00205.x CrossRefGoogle Scholar
  20. Fairbanks RG (1989) A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342:637–642CrossRefGoogle Scholar
  21. Gyllencreutz R, Backman J, Jakobsson M, Kissel C, Arnold E (2006) Postglacial palaeoceanography in the Skagerrak. The Holocene 16:975–985. doi: 10.1177/0959683606hl988rp CrossRefGoogle Scholar
  22. Houmark-Nielsen M (1987) Pleistocene stratigraphy and glacial history of the central part of Denmark. Bull Geol Soc Denmark 36:1–189Google Scholar
  23. Houmark-Nielsen M (2004) The Pleistocene of Denmark: a review of stratigraphy and glaciation history. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations - extent and chronology. Elsevier, Amsterdam, pp 35–46CrossRefGoogle Scholar
  24. Houmark-Nielsen M (2007) Extent and age of middle and late Pleistocene glaciations and periglacial episodes in southern Jylland, Denmark. Bull Geol Soc Denmark 55:9–35Google Scholar
  25. Houmark-Nielsen M (2011) The Stevns peninsula and quaternary icestream (in Danish). Geol Tidsskr 2011:1–11Google Scholar
  26. Houmark-Nielsen M, Kjær KH (2003) Southwest Scandinavia, 40-15 kyr BP: palaeogeography and environmental change. J Quat Sci 18:769–786. doi: 10.1002/jqs.802 CrossRefGoogle Scholar
  27. Houmark-Nielsen M, Linge H, Fabel D, Schnabel C, Xue S, Wilcken KM, Binnie S (2012) Cosmogenic surface exposure dating the last deglaciation in Denmark: discrepancies with independent age constraints suggest delayed periglacial landform stabilisation. Quat Geochronol 13:1–17CrossRefGoogle Scholar
  28. Humlum O, Houmark-Nielsen M (1994) High deglaciation rates in Denmark during the late Weichselian - implications for the palaeoenvironment. Geogr Tidsskr 94:25–35Google Scholar
  29. Hunt D, Tucker ME (1992) Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level fall. Sediment Geol 81:1–9CrossRefGoogle Scholar
  30. Hydrographic surveying (2016) Hydrographic surveying Accessed 8 April 2016
  31. Jakobsen PR, Overgaard T (2002) Georadar facies and glaciotectonic structures in ice marginal deposits, northwest Zealand, Denmark. Quat Sci Rev 21:917–927. doi: 10.1016/S0277-3791(01)00045-2 CrossRefGoogle Scholar
  32. Jensen JB, Bennike O (2009) Geological setting as background for methane distribution in Holocene mud deposits, Århus bay, Denmark. Cont Shelf Res 29:775–784. doi: 10.1016/j.csr.2008.08.007 CrossRefGoogle Scholar
  33. Jensen JB, Bennike O, Witkowski A, Lemke W, Kuijpers A (1999) Early Holocene history of the southwestern Baltic Sea: the Ancylus Lake stage. Boreas 28:437–453. doi: 10.1111/j.1502-3885.1999.tb00233.x CrossRefGoogle Scholar
  34. Jensen JB, Petersen KS, Konradi P, Kuijpers A, Bennike O, Lemke W, Endler R (2002) Neotectonics, sea-level changes and biological evolution in the Fennoscandian border zone of the southern Kattegat Sea. Boreas 31:133–150. doi: 10.1111/j.1502-3885.2002.tb01062.x CrossRefGoogle Scholar
  35. Jiang H, Klingberg F (1996) The transition from the Younger Dryas to the Preboreal: a case study from the Kattegat, Scandinavia. Boreas 25:271–282. doi: 10.1111/j.1502-3885.1996.tb00644.x CrossRefGoogle Scholar
  36. Jiang H, Nordberg K (1996) Late Weichselian environmental changes of the southern Kattegat, Scandinavia, inferred from diatom records. In: Late Quaternary palaeoceanography, North Atlantic margins, pp 245–260. doi: 10.1144/GSL.SP.1996.111.01.16
  37. Kench PS (1999) Geomorphology of Australian estuaries: review and prospect. Aust J Ecol 24:367–380. doi: 10.1046/j.1442-9993.1999.00985.x CrossRefGoogle Scholar
  38. Kjær KH, Houmark-nielsen M, Richardt N (2003) Ice-flow patterns and dispersal of erratics at the southwestern margin of the last Scandinavian ice sheet: signature of palaeo-ice streams. Boreas 32:130–148. doi: 10.1080/03009480310001074 CrossRefGoogle Scholar
  39. Klingberg F (1996) The late Weichselian – early Holocene Lindhov clay sequence in the Varberg area, southwestern Sweden. Nor Geol Underg Bull 430:17–24Google Scholar
  40. Knudsen KL, Conradsen K, Heier-Nielsen S, Seidenkrantz M (1996) Palaeoenvironments in the Skagerrak-Kattegat basin in the eastern North Sea during the last deglaciation. Boreas 25:62–77. doi: 10.1111/j.1502-3885.1996.tb00836.x Google Scholar
  41. Krog H, Tauber H (1974) C-14 chronology of late- and post-glacial marine deposits in North Jutland. Geol Surv Denmark Yearbook 1:93–105Google Scholar
  42. Lambeck K, Chappell J (2001) Sea level change through the last glacial cycle. Science 292:679–686. doi: 10.1126/science.1059549 CrossRefGoogle Scholar
  43. Lomholt S, Mikkelsen DM, Pedersen NN, Olesen M, Leth JO, Kristensen MB, Jensen JB, Skar S, Paradeisis-Stathis S (2016) Mapping of marine raw material in the inner Danish waters (in Danish). Danmarks og Grønlands Geologiske Undersøgelser Rapport 2016/15Google Scholar
  44. Lykke-Andersen H, Seidenkrantz M-S, Knudsen KL (1993) Quaternary sequences and their relations to the pre-quaternary in the vicinity of Anholt, Kattegat, Scandinavia. Boreas 22:291–298. doi: 10.1111/j.1502-3885.1993.tb00189.x CrossRefGoogle Scholar
  45. Mitchum RM, Vail PR, Sangree JB (1977) Seismic stratigraphy and global changes of sea level, part 6: stratigraphic interpretation of reflection patterns in depositional sequences. In: Payton CE (ed) seismic stratigraphy – application to hydrocarbon exploration. Am Assoc Pet Geol Memoir 26:117–133Google Scholar
  46. Mörner N-A (1969) The Late Quaternary history of the Kattegatt sea and the Swedish west coast. Deglaciation, shorelevel displacement chronology, isostasy and eustacy. Sveriges Geologiska Undersökning Ser C 63Google Scholar
  47. Mörner N-A (1978) Faulting, fracturing, and seismicity as functions of glacio-isostasy in Fennoscandia. Geology 6:41–45. doi: 10.1130/0091-7613(1978)6<41:FFASAF>2.0.CO;2 CrossRefGoogle Scholar
  48. Mörner N-A (1983) The Fennoscandian uplift: geological data and their geodynamical implications. In: Mörner N-A (ed) Earth rheology, isostacy and eustacy. Wiley, New York, pp 251–284Google Scholar
  49. Myrberg K, Lehmann A (2013) Topography, hydrography, circulation and modelling of the Baltic Sea. In: Soomere T, Quak E (eds) Preventive methods for coastal protection. Springer, Cham, pp 31–64CrossRefGoogle Scholar
  50. Nielsen PE, Konradi PB (1990) Seismic stratigraphy and foraminifera in late quaternary deposits, southern Kattegat, Denmark. In: Kauranne LK, Königsson L-K (eds) quaternary economic geology in the Nordic countries. Striae 29:105–110Google Scholar
  51. Nordberg K (1989) Seafloor deposits, paleoecology and paleoceanography in the Kattegat during the later part of the Holocene. Geologiska institutionen, Chalmers Tekniska Högskola och Göteborgs Universitet, Publ. A 65:205Google Scholar
  52. Nordberg K, Bergsten H (1988) Biostratigraphic and sedimentological evidence of hydrographic changes in the Kattegat during the late part of the Holocene. Mar Geol 83:123–158CrossRefGoogle Scholar
  53. Novak B, Björck S (1998) Marine seismic studies in southern Kattegat, with special emphasis on longitudinal bars and their possible relationship to the drainage of the Ancylus Lake. Geol Föreningen i Stock Förhandlingar 120:297–306Google Scholar
  54. Novak B, Pedersen GK (2000) Sedimentology, seismic facies and stratigraphy of a Holocene spit – platform complex interpreted from high-resolution shallow seismic, Lysegrund, southern Kattegat, Denmark. Mar Geol 162:317–335CrossRefGoogle Scholar
  55. Peltier WR (2002) On eustatic sea level history: last glacial maximum to Holocene. Quat Sci Rev 21:377–396. doi: 10.1016/S0277-3791(01)00084-1 CrossRefGoogle Scholar
  56. Posamentier HW, Allen GP (1993) Variability of the sequence stratigraphic model: effects of local basin factors. Sediment Geol 86:91–109CrossRefGoogle Scholar
  57. Rasmussen SO, Bigler M, Blockley SP, Blunier T, Buchardt SL, Clausen HB, Cvijanovic I, Dahl-Jensen D, Johnsen SJ, Fischer H, Gkinis V, Guillevic M, Hoek WZ, Lowe JJ, Pedro JB, Popp T, Seierstad IK, Steffensen JP, Svensson AM, Vallelonga P, Vinther BM, Walker MJC, Wheatley JJ, Winstrup M (2014) A stratigraphic framework for abrupt climatic changes during the last glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat Sci Rev 106:14–28CrossRefGoogle Scholar
  58. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, Plicht J (2013) Intcal13 and marine13 radiocarbon age calibration curves 0 – 50,000 years cal BP. Radiocarbon 55:1869–1887CrossRefGoogle Scholar
  59. Richardt N (1996) Sedimentological examination of the late Weichselian sea-level history following deglaciation of northern Denmark. Geol Soc Lond Spec Publ 111:261–273. doi: 10.1144/GSL.SP.1996.111.01.17 CrossRefGoogle Scholar
  60. Rößler D, Moros M, Lemke W (2011) The Littorina transgression in the southwestern Baltic Sea: new insights based on proxy methods and radiocarbon dating of sediment cores. Boreas 40:231–241CrossRefGoogle Scholar
  61. Roy P, Williams R, Jones AR, Yassini I, Gibbs P, Coates B, West R, Scanes P, Hudson J, Nichol S (2001) Structure and function of south-east Australian estuaries. Estuar Coast Shelf Sci 53:351–384. doi: 10.1006/ecss.2001.0796 CrossRefGoogle Scholar
  62. Seidenkrantz M-S (1993a) Subrecent changes in the forminiferal distribution in the Kattegat and the Skagerrak, Scandinavia: anthropogenic influence and natural causes. Boreas 22:383–395CrossRefGoogle Scholar
  63. Seidenkrantz M-S (1993b) Foraminifera from the quaternary sequence in the Anholt boring, Denmark. Boreas 22:283–290CrossRefGoogle Scholar
  64. Seidenkrantz M-S (1993c) Benthic foraminiferal and stable isotope evidence for a “Younger Dryas-style” cold spell at the Saalian-Eemian transition, Denmark. Palaeogeogr Palaeoclimatol Palaeoecol 102:103–120CrossRefGoogle Scholar
  65. Seidenkrantz M-S, Knudsen KL (1993) Middle Weichselian to Holocene palaeoecology in the eastern Kattegat, Scandinavia: foraminifera, ostracods and 14C measurements. Boreas 22:299–310CrossRefGoogle Scholar
  66. Siddall M, Rohling E, Almogi-Labin A, Hemleben C, Meischner D, Schmelzer I, Smeed DA (2003) Sea-level fluctuations during the last glacial cycle. Nature 423:853–858. doi: 10.1038/nature01690 CrossRefGoogle Scholar
  67. Uehara K, Scourse JD, Horsburgh KJ, Lambeck K, Purcell AP (2006) Tidal evolution of the northwest European shelf seas from the last glacial maximum to the present. J Geophys Res 111:C09025. doi: 10.1029/2006JC0003531 CrossRefGoogle Scholar
  68. Virtasalo JJ, Hämäläinen J, Kotilainen AT (2014) Toward a standard stratigraphical classification practice for the Baltic Sea sediments: the CUAL approach. Boreas 43:924–938. doi: 10.1111/bor.12076 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Carina Bendixen
    • 1
    • 2
  • Lars Ole Boldreel
    • 2
  • Jørn Bo Jensen
    • 1
  • Ole Bennike
    • 1
  • Christian Hübscher
    • 3
  • Ole Rønø Clausen
    • 4
  1. 1.Geological Survey of Denmark and GreenlandCopenhagen KDenmark
  2. 2.Department of Geosciences and Natural Resource Management, Geology sectionUniversity of CopenhagenCopenhagen KDenmark
  3. 3.GeophysicsUniversity of HamburgHamburgGermany
  4. 4.Center for Past Climate Studies, Department of GeoscienceAarhus UniversityAarhus CDenmark

Personalised recommendations