Geo-Marine Letters

, Volume 37, Issue 6, pp 561–577 | Cite as

Morpho-sedimentary features and sediment dispersal systems of the southwest end of the Ryukyu Trench: a source-to-sink approach

  • Kan-Hsi Hsiung
  • Toshiya Kanamatsu
  • Ken Ikehara
  • Kazuya Shiraishi
  • Chorn-Shern Horng
  • Kazuko Usami


The southwestern Ryukyu Trench near Taiwan is an ideal place for source-to-sink studies because of the short sediment transport route between the terrestrial sediment source in Taiwan and the marine sink in the Ryukyu Trench. Bathymetric and seismic reflection data and core samples from the area around the southwestern Ryukyu Trench were used to identify features of the trench–arc system, including submarine canyons, the trench wedge, bathymetric ridges, and forearc basins, which together form two distinct sediment dispersal systems: a longitudinal (trench-parallel) system and a transverse (trench-normal) system. The longitudinal sediment dispersal system carries sediments eroded from the Taiwan orogenic belt eastward, primarily along the Hualien Canyon and a channel–terminal fan system at its mouth, and deposits them in the southwestern end of the Ryukyu Trench. The transverse sediment dispersal system carries sediments eroded from the Ryukyu Islands downslope and deposits them in the Hoping, Nanao, East Nanao, and Hateruma forearc basins, behind the barrier formed by the E–W-trending Yaeyama Ridge on the trench-slope break. The presence of pyrrhotite, a characteristic component of sediments sourced from Taiwan, in a seafloor sample from the Ryukyu Trench and its absence in a sample from the East Nanao forearc basin support the view that the southwestern Ryukyu Trench is longitudinally fed by sediment derived from Taiwan, whereas the trench-slope forearc basins receive sediment transported transversely downslope from the Ryukyu Islands.



The authors gratefully recognize the efforts of Captain Takafumi Aoki and the crew of R/V Kairei during the KR15-18 survey. The cruises YK15-01 and KR15-18 were supported by the research project for Compound Disaster Mitigation on the Great Earthquakes and Tsunamis Around the Nankai Trough Region of the Japanese Ministry of Education, Culture, Sports, Science and Technology, Japan. We thank the Ministry of Science and Technology, Taiwan, for permission to use bathymetric and seismic reflection data stored in the Ocean Data Bank, National Taiwan University, Taiwan. We are grateful to Prof. H.S. Yu for constructive comments on our interpretations of seismic reflection profiles. The article benefitted from helpful assessments by two reviewers.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest with third parties.


  1. Abrahams SC, Calhoun BA (1953) The low-temperature transition in magnetite. Acta Crystallogr 6(1):105–106CrossRefGoogle Scholar
  2. Aiba J, Sekiya E (1979) Distribution and characteristics of the Neogene sedimentary basins around the Nansei-Shoto (Ryukyu Islands) (in Japanese with English abstract). J Japanese Assoc Petrol Technol 44:329–340CrossRefGoogle Scholar
  3. Angelier J (1986) Geodynamics of the Eurasia-Philippine Sea Plate Boundary: preface. Tectonophysics 125(1-3):IX–XGoogle Scholar
  4. Bentahila Y, Othman DB, Luck JM (2008) Strontium, lead and zinc isotopes in marine cores as tracers of sedimentary provenance: a case study around Taiwan orogen. Chem Geol 248:62–82CrossRefGoogle Scholar
  5. Collot JY, Fisher MA (1991) The collision zone between the north d’Entrecasteaux ridge and the new Hebrides island arc 1. Sea beam morphology and shallow structure. J Geophys Res 96:4457–4478. doi: 10.1029/90JB00715 CrossRefGoogle Scholar
  6. Covault JA, Fildani A, Romans BW, McHargue T (2011) The natural range of submarine canyon-and-channel longitudinal profiles. Geosphere 7:313–332. doi: 10.1130/GES00610.1 CrossRefGoogle Scholar
  7. Dadson SJ, Hovius N, Chen H, Dade WB, Lin JC, Hsu ML, Lin CW, Horng MJ, Chen TC, Milliman J, Stark CP (2004) Earthquake-triggered increase in sediment delivery from an active mountain belt. Geology 32(8):733–736. doi: 10.1130/G20639.1 CrossRefGoogle Scholar
  8. Dadson S, Hovius N, Pegg S, Dade WB, Horng MJ, Chen H (2005) Hyperpycnal river flows from an active mountain belt. J Geophys Res Earth Surf 110(F4). doi: 10.1029/2004JF000244
  9. Damuth JE (1979) Migrating sediment waves created by turbidity currents in the northern South China Basin. Geology 7:520–523CrossRefGoogle Scholar
  10. Dekkers MJ, Mattéi JL, Fillion G, Rochette P (1989) Grain-size dependence of the magnetic behavior of pyrrhotite during its low-temperature transition at 34 K. Geophys Res Lett 16(8):855–858. doi: 10.1029/GL016i008p00855 CrossRefGoogle Scholar
  11. Deschamps AE, Lallemand SE, Collot JY (1998) A detailed study of the Gagua ridge: a fracture zone uplifted during a plate reorganisation in the mid-Eocene. Mar Geophys Res 20(5):403–423. doi: 10.1023/A:1004650323183 CrossRefGoogle Scholar
  12. Dominguez S, Lallemand S, Malavieille J, Schnürle P (1998) Oblique subduction of the Gagua ridge beneath the Ryukyu accretionary wedge system: insights from marine observations and sandbox experiments. Mar Geophys Res 20(5):383–402. doi: 10.1023/A:1004614506345 CrossRefGoogle Scholar
  13. Eakin DH, McIntosh KD, Van Avendonk HJA, Lavier L (2015) New geophysical constraints on a failed subduction initiation: the structure and potential evolution of the Gagua ridge and Huatung Basin. Geochem Geophys Geosyst 16(2):380–400. doi: 10.1002/2014GC005548 CrossRefGoogle Scholar
  14. Font Y, Liu CS, Schnurle P, Lallemand S (2001) Constraints on backstop geometry of the southwest Ryukyu subduction based on reflection seismic data. Tectonophysics 333(1):135–158. doi: 10.1016/S0040-1951(00)00272-9 CrossRefGoogle Scholar
  15. Gohl K, Nitsche F, Miller H (1997) Seismic and gravity data reveal tertiary interplate subduction in the Bellingshausen Sea, southeast Pacific. Geology 25(4):371–374CrossRefGoogle Scholar
  16. Hayes DE, Lewis SD (1984) A geophysical study of the Manila trench, Luzon, Philippines 1. Crustal structure, gravity, and regional tectonic evolution. J Geophys Res 89(B11):9171–9195. doi: 10.1029/JB089iB11p09171 CrossRefGoogle Scholar
  17. Hinderer M (2012) From gullies to mountain belts: a review of sediment budgets at various scales. Sediment Geol 280:21–59. doi: 10.1016/j.sedgeo.2012.03.009 CrossRefGoogle Scholar
  18. Ho CS (1986) A synthesis of the geologic evolution of Taiwan. Tectonophysics 125:1–16. doi: 10.1016/0040-1951(86)90004-1 CrossRefGoogle Scholar
  19. Horng CS, Roberts AP (2006) Authigenic or detrital origin of pyrrhotite in sediments?: resolving a paleomagnetic conundrum. Earth Planet Sci Lett 241:750–762. doi: 10.1016/j.epsl.2005.11.008 CrossRefGoogle Scholar
  20. Horng CS, Huh CA, Chen KH, Lin CH, Shea KS, Hsiung KH (2012) Pyrrhotite as a tracer for denudation of the Taiwan orogen. Geochem Geophys Geosyst 13(8):Q08Z47. doi: 10.1029/2012GC004195 CrossRefGoogle Scholar
  21. Hsiung K-H, Yu H-S (2011) Morpho-sedimentary evidence for a canyon–channel–trench interconnection along the Taiwan–Luzon plate margin, South China Sea. Geo-Mar Lett 31:215–226. doi: 10.1007/s00367-010-0226-7 CrossRefGoogle Scholar
  22. Hsiung KH, Yu HS (2013) Sediment dispersal system in the Taiwan–South China Sea collision zone along a convergent margin: a comparison with the Papua New Guinea collision zone of the western Solomon Sea. J Asian Earth Sci 62:295–307. doi: 10.1016/j.jseaes.2012.10.006 CrossRefGoogle Scholar
  23. Hsiung KH, Yu HS, Su M (2015) Sedimentation in remnant ocean basin off southwest Taiwan with implication for closing northeastern South China Sea. J Geol Soc 172:641–647. doi: 10.1144/jgs2014-077 CrossRefGoogle Scholar
  24. Jabaloy A, Balanyá JC, Barnolas A, Galindo-Zaldıvar J, Hernández-Molina FJ, Maldonado A, Martínez-Martíneza JM, Rodríguez-Fernández J, de Galdeano CS, Somoza L, Suriñach E, Vázquez JT (2003) The transition from an active to a passive margin (SW end of the south Shetland trench, Antarctic Peninsula). Tectonophysics 366(1):55–81. doi: 10.1016/S0040-1951(03)00060-X CrossRefGoogle Scholar
  25. Jarrard RD (1986) Relations among subduction parameters. Rev Geophys 24:217–284. doi: 10.1029/RG024i002p00217 CrossRefGoogle Scholar
  26. Karig DE (1973) Plate convergence between the Philippines and the Ryukyu Islands. Mar Geol 14(3):153–168. doi: 10.1016/0025-3227(73)90025-X CrossRefGoogle Scholar
  27. Karig DE, Sharman GF (1975) Subduction and accretion in trenches. Geol Soc Am Bull 86(3):377–389CrossRefGoogle Scholar
  28. Kizaki K (1986) Geology and tectonics of the Ryukyu Islands. Tectonophysics 125(1):193–207. doi: 10.1016/0040-1951(86)90014-4 CrossRefGoogle Scholar
  29. Lallemand S, Liu CS, Dominguez S, Schnürle P, Malavieille J (1999) Trench-parallel stretching and folding of forearc basins and lateral migration of the accretionary wedge in the southern Ryukyus: a case of strain partition caused by oblique convergence. Tectonics 18(2):231–247. doi: 10.1029/1998TC900011 CrossRefGoogle Scholar
  30. Lash GG (1985) Recognition of trench fill in orogenic flysch sequences. Geology 13(12):867–870CrossRefGoogle Scholar
  31. Lehu R, Lallemand S, Hsu SK, Babonneau N, Ratzov G, Lin AT, Dezileau L (2015) Deep-sea sedimentation offshore eastern Taiwan: facies and processes characterization. Mar Geol 369:1–18. doi: 10.1016/j.margeo.2015.05.013 CrossRefGoogle Scholar
  32. Lewis KB (1994) The 1500-km-long Hikurangi Channel: trench-axis channel that escapes its trench, crosses a plateau, and feeds a fan drift. Geo-Mar Lett 14(1):19–28. doi: 10.1007/BF01204467 CrossRefGoogle Scholar
  33. Lewis SD, Hayes DE (1989) Plate convergence and deformation, north Luzon ridge, Philippines. Tectonophysics 168(1-3):221–237. doi: 10.1016/0040-1951(89)90377-6 CrossRefGoogle Scholar
  34. Macdonald DIM (1993) Controls on sedimentation at convergent plate-margins. In: Frostick LE, Stell RJ (eds) Tectonic controls and signatures in sedimentary successions. Blackwell, Oxford, pp 225–257Google Scholar
  35. Malatesta C, Gerya T, Crispini L, Federico L, Capponi G (2013) Oblique subduction modelling indicates along-trench tectonic transport of sediments. Nat Commun 4:2456. doi: 10.1038/ncomms3456 CrossRefGoogle Scholar
  36. Malavieille J, Lallemand SE, Dominguez S, Deschamps A, Lu CY, Liu CS, Schnürle P (2002) Arc-continent collision in Taiwan: new marine observations and tectonic evolution. In: Byrne TB, Liu CS (eds) Geology and geophysics of an arc-continent collision, Taiwan, republic of China. Geol Soc Am Spec Pap 358:189–213Google Scholar
  37. Maldonado A, Larter RD, Aldaya F (1994) Forearc tectonic evolution of the south Shetland margin, Antarctic Peninsula. Tectonics 13(6):1345–1370. doi: 10.1029/94TC01352 CrossRefGoogle Scholar
  38. MARGINS (2004) MARGINS Science Plans 2004. Scholar
  39. McIntosh KD, Nakamura Y (1998) Crustal structure beneath the Nanao forearc basin from TAICRUST MCS/OBS line 14. Terr Atmos Ocean Sci 9(3):345–362CrossRefGoogle Scholar
  40. Milliman JD, Lin SW, Kao SJ, Liu JP, Liu CS, Chiu JK, Lin YC (2007) Short-term changes in seafloor character due to flood-derived hyperpycnal discharge: typhoon Mindulle, Taiwan, July 2004. Geology 35(9):779–782. doi: 10.1130/G23760A.1 CrossRefGoogle Scholar
  41. Milsom J, Masson D, Nicols G (1992) Three trench endings in eastern Indonesia. Mar Geol 104(1):227–241. doi: 10.1016/0012-821X(87)90009-4 CrossRefGoogle Scholar
  42. Mountney NP, Westbrook GK (1996) Modelling sedimentation in ocean trenches: the Nankai trough from 1 ma to the present. Basin Res 8(1):85–101. doi: 10.1111/j.1365-2117.1996.tb00116.x CrossRefGoogle Scholar
  43. Nichols G, Hall R, Milsom J, Masson D, Parson L, Sikumbang N, Dwiyanto B, Kallagher H (1990) The southern termination of the Philippine trench. Tectonophysics 183(1-4):289–303. doi: 10.1016/0040-1951(90)90422-5 CrossRefGoogle Scholar
  44. Okada H (1989) Anatomy of trench-slope basins: examples from the Nankai trough. Palaeogeogr Palaeoclimatol Palaeoecol 71(1-2):3–13. doi: 10.1016/0031-0182(89)90026-6 CrossRefGoogle Scholar
  45. Pickering KT, Hiscott RN (2015) Deep marine systems: processes, deposits, environments, tectonics and sedimentation. Wiley, ChichesterGoogle Scholar
  46. Rochette P (1987) Metamorphic control of the magnetic mineralogy of black shales in the Swiss alps: toward the use of “magnetic isogrades”. Earth Planet Sci Lett 84(4):446–456. doi: 10.1016/0012-821X(87)90009-4 CrossRefGoogle Scholar
  47. Sagawa N, Nakamori T, Iryu Y (2001) Pleistocene reef development in the southwest Ryukyu Islands, Japan. Palaeogeogr Palaeoclimatol Palaeoecol 175(1):303–323. doi: 10.1016/S0031-0182(01)00377-7 CrossRefGoogle Scholar
  48. Schnürle P, Liu CS, Lallemand SE, Reed DL (1998a) Structural insight into the south Ryukyu margin: effects of the subducting Gagua ridge. Tectonophysics 288(1):237–250. doi: 10.1016/S0040-1951(97)00298-9 CrossRefGoogle Scholar
  49. Schnürle P, Liu CS, Lallemand SE, Reed DL (1998b) Structural controls of the Taitung canyon in the Huatung Basin east of Taiwan. Terr Atmos Ocean Sci 9(3):453–472CrossRefGoogle Scholar
  50. Smoczyk GM, Hayes GP, Hamburger MW, Benz HM, Villaseñor A, Furlong KP (2013) Seismicity of the Earth 1900-2012 Philippine Sea plate and vicinity. US Geological Survey, No. 2010-1083-MGoogle Scholar
  51. Soh W, Machiyama H, Shirasaki Y, Kasahara J (2004) Deep-sea floor instability as cause of deep-water cable fault, off eastern part of Taiwan. Frontier Res Earth Evol 2:1–8Google Scholar
  52. Sømme TO, Helland-Hansen W, Martinsen OJ, Thurmond JB (2009) Relationships between morphological and sedimentological parameters in source-to-sink systems: a basis for predicting semi-quantitative characteristics in subsurface systems. Basin Res 21(4):361–387. doi: 10.1111/j.1365-2117.2009.00397.x CrossRefGoogle Scholar
  53. Spinelli GA, Mozley PS, Tobin HJ, Underwood MB, Hoffman NW, Bellew GM (2007) Diagenesis, sediment strength, and pore collapse in sediment approaching the Nankai trough subduction zone. Geol Soc Am Bull 119(3-4):377–390. doi: 10.1130/B25920.1 CrossRefGoogle Scholar
  54. Stern RJ (2002) Subduction zones. Rev Geophys 40:1012. doi: 10.1029/2001RG000108 CrossRefGoogle Scholar
  55. Su M, Hsiung KH, Zhang C, Xie X, Yu HS, Wang Z (2015) The linkage between longitudinal sediment routing systems and basin types in the northern South China Sea in perspective of source-to-sink. J Asian Earth Sci 111:1–13. doi: 10.1016/j.jseaes.2015.05.011
  56. Suppe J (1981) Mechanics of mountain building and metamorphism in Taiwan. Mem Geol Soc China 4:67–89Google Scholar
  57. Thornburg TM, Kulm LD (1987) Sedimentation in the Chile trench: depositional morphologies, lithofacies, and stratigraphy. Geol Soc Am Bull 98(1):33–52CrossRefGoogle Scholar
  58. Thornburg TM, Kulm LD, Hussong DM (1990) Submarine-fan development in the southern Chile trench: a dynamic interplay of tectonics and sedimentation. Geol Soc Am Bull 102(12):1658–1680CrossRefGoogle Scholar
  59. Ujiie H, Tanaka Y, Ono T (1991) Late quaternary paleoceanographic record from the middle Ryukyu trench slope, northwest Pacific. Mar Micropaleontol 18(1):115–128. doi: 10.1016/0377-8398(91)90008-T CrossRefGoogle Scholar
  60. Ujiie H, Nakamura T, Miyamoto Y, Park JO, Hyun S, Oyakawa T (1997) Holocene turbidite core from the southern Ryukyu trench slope: suggestions of periodic earthquakes. J Geol Soc Japan 103(6):590–603CrossRefGoogle Scholar
  61. Underwood MB, Karig DE (1980) Role of submarine canyons in trench and trench-slope sedimentation. Geology 8(9):432–436CrossRefGoogle Scholar
  62. Underwood MB, Ballance PF, Clift PD, Hiscott RN, Marsaglia KM, Pickering KT, Reid RP (1995) Sedimentation in forearc basins, trenches, and collision zones of the western Pacific: a summary of results from the ocean drilling program. In: Active Margins and Marginal Basins of the Western Pacific, pp 315–353Google Scholar
  63. Van Avendonk HJA, Kuo-Chen H, McIntosh KD, Lavier LL, Okaya DA, Wu FT, Wang CY, Lee CS, Liu CS (2014) Deep crustal structure of an arc-continent collision: constraints from seismic traveltimes in central Taiwan and the Philippine Sea. J Geophys Res Solid Earth 119(11):8397–8416. doi: 10.1002/2014JB011327 CrossRefGoogle Scholar
  64. Von Huene R (1986) To accrete or not accrete, that is the question. Geol Rundsch 75(1):1–15CrossRefGoogle Scholar
  65. Wessel P, Smith WHF, Scharroo R, Luis J, Wobbe F (2013) Generic mapping tools: improved version released. EOS Trans Am Geophys Union 94(45):409–410CrossRefGoogle Scholar
  66. Whitmore GP, Crook KAW, Johnson DP (1999) Sedimentation in a complex convergent margin: the Papua New Guinea collision zone of the western Solomon Sea. Mar Geol 157:19–45. doi: 10.1016/S0025-3227(98)00132-7 CrossRefGoogle Scholar
  67. Wu S, Takahashi N, Tokuyama H, Wong HK (2005) Geomorphology, sedimentary processes and development of the Zenisu deep-sea channel, northern Philippine Sea. Geo-Mar Lett 25(4):230–240. doi: 10.1007/s00367-005-0210-9 CrossRefGoogle Scholar
  68. Yu HS (2003) Geological characteristics and distribution of submarine physiographic features in the Taiwan region. Mar Georesour Geotechnol 21(3-4):139–153. doi: 10.1080/713773391 CrossRefGoogle Scholar
  69. Yu HS, Chiang CS, Shen SM (2009) Tectonically active sediment dispersal system in SW Taiwan margin with emphasis on the Gaoping (Kaoping) submarine canyon. J Mar Syst 76:369–382. doi: 10.1016/j.jmarsys.2007.07.010 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Kan-Hsi Hsiung
    • 1
  • Toshiya Kanamatsu
    • 1
  • Ken Ikehara
    • 2
  • Kazuya Shiraishi
    • 1
  • Chorn-Shern Horng
    • 3
  • Kazuko Usami
    • 2
  1. 1.Japan Agency for Marine-Earth Science and TechnologyYokohamaJapan
  2. 2.Geological Survey of JapanNational Institute of Advanced Industrial Science and TechnologyTsukubaJapan
  3. 3.Academia SinicaInstitute of Earth SciencesTaiwanRepublic of China

Personalised recommendations