Skip to main content

Advertisement

Log in

Evidence for Holocene centennial variability in sea ice cover based on IP25 biomarker reconstruction in the southern Kara Sea (Arctic Ocean)

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

The Holocene is characterized by the late Holocene cooling trend as well as by internal short-term centennial fluctuations. Because Arctic sea ice acts as a significant component (amplifier) within the climate system, investigating its past long- and short-term variability and controlling processes is beneficial for future climate predictions. This study presents the first biomarker-based (IP25 and PIP25) sea ice reconstruction from the Kara Sea (core BP00-07/7), covering the last 8 ka. These biomarker proxies reflect conspicuous short-term sea ice variability during the last 6.5 ka that is identified unprecedentedly in the source region of Arctic sea ice by means of a direct sea ice indicator. Prominent peaks of extensive sea ice cover occurred at ~3, ~2, ~1.3 and ~0.3 ka. Spectral analysis of the IP25 record revealed ~400- and ~950-year cycles. These periodicities may be related to the Arctic/North Atlantic Oscillation, but probably also to internal climate system fluctuations. This demonstrates that sea ice belongs to a complex system that more likely depends on multiple internal forcing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersen KK, Azuma N, Barnola JM, Bigler M, Biscaye P et al (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431(7005):147–151

    Article  Google Scholar 

  • Andreev AA, Klimanov VA (2000) Quantitative Holocene climatic reconstruction from Arctic Russia. J Paleolimnol 24:81–91

    Article  Google Scholar 

  • Andreev AA, Peteet DM, Tarasov PE, Filimonova L, Romanenko FA, Sulerzhitsky LD (2001) Late Pleistocene interstadial environment on Faddeyevskiy Island, East Siberian Sea, Russia. Arct Antarct Alp Res 33:28–35

    Article  Google Scholar 

  • Andrews JT, Jennings AE, Moros M, Hillaire-Marcel C, Eberle D (2006) Is there a pervasive Holocene ice-rafted debris (IRD) signal in the northern North Atlantic? The answer appears to be either no, or it depends on the proxy! PAGES News 14(2):7–9

    Google Scholar 

  • Bakke J, Lie Ø, Dahl SO, Nesje A, Bjune AE (2008) Strength and spatial patterns of the Holocene wintertime westerlies in the NE Atlantic region. Glob Planet Chang 60:28–41

    Article  Google Scholar 

  • Bauch HA, Mueller-Lupp T, Taldenkova E, Spielhagen RF, Kassens H, Grootes PM, Thiede J, Heinemeier J, Petryashov VV (2001) Chronology of the Holocene transgression at the North Siberian margin. Glob Planet Chang 31:125–139

    Article  Google Scholar 

  • Belt ST, Müller J (2013) The Arctic sea ice biomarker IP25: a review of current understanding, recommendations for future research and applications in palaeo sea ice reconstructions. Quat Sci Rev 79:9–25

    Article  Google Scholar 

  • Belt ST, Massé G, Rowland SJ, Poulin M, Michel C, LeBlanc B (2007) A novel chemical fossil of palaeo sea ice: IP25. Org Geochem 38:16–27

    Article  Google Scholar 

  • Berben SMP, Husum K, Cabedo-Sanz P, Belt ST (2014) Holocene sub-centennial evolution of Atlantic water inflow and sea ice distribution in the western Barents Sea. Clim Past 10:181–198

    Article  Google Scholar 

  • Blackman RB, Tukey JW (1958) The measurement of power spectra from the point of view of communication engineering. Dover, New York

    Google Scholar 

  • Bradley RS, England JH (2008) The Younger Dryas and the sea of ancient ice. Quat Res 70:1–10

    Article  Google Scholar 

  • Brown TA, Belt ST, Tatarek A, Mundy CJ (2014) Source identification of the Arctic sea ice proxy IP25. Nat Commun 5:4197. doi:10.1038/ncomms5197

    Google Scholar 

  • Cabedo-Sanz P, Belt ST, Knies J, Husum K (2013) Identification of contrasting seasonal sea ice conditions during the Younger Dryas. Quat Sci Rev 79:74–86

    Article  Google Scholar 

  • Chapman MR, Shackleton NJ (2000) Evidence of 550-year and 1000-year cyclicities in North Atlantic circulation patterns during the Holocene. The Holocene 10(3):287–291

    Article  Google Scholar 

  • Cohen J, Foster J, Barlow M, Saito K, Jones J (2010) Winter 2009-2010: a case study of an extreme Arctic Oscillation event. Geophys Res Lett 37, L17707. doi:10.1029/2010GL044256

    Google Scholar 

  • Dahl SO, Nesje A (1996) A new approach to calculating Holocene winter precipitation by combining glacier equilibrium-line altitudes and pine-tree limits: a case study from Hardangerjokulen, central southern Norway. The Holocene 4:381–398

    Article  Google Scholar 

  • Darby DA, Ortiz JD, Grosch CE, Lund SP (2012) 1,500-year cycle in the Arctic Oscillation identified in Holocene Arctic sea-ice drift. Nat Geosci 5:897–900

    Article  Google Scholar 

  • de Vernal A, Hillaire-Marcel C, Rochon A, Fréchette B, Henry M, Solignac BS (2013) Dinocyst-based reconstructions of sea ice cover concentration during the Holocene in the Arctic Ocean, the northern North Atlantic Ocean and its adjacent seas. Quat Sci Rev 79:111–121

    Article  Google Scholar 

  • Dieckmann GS, Hellmer HH (2008) The importance of sea ice: an overview. In: Thomas DN, Diekmann GS (eds) Sea ice: an introduction to its physics, chemistry, biology, and geology. Blackwell Science, Oxford, pp 1–21

    Google Scholar 

  • Divine D, Korsnes R, Makshtas A (2004) Temporal and spatial variations of shore-fast ice in the Kara Sea. Cont Shelf Res 24(15):1717–1736

    Article  Google Scholar 

  • Divine D, Korsnes R, Makshtas A, Godtliebsen F, Svendsen H (2005) Atmospheric-driven state transfer of shore-fast ice in the northeastern Kara Sea. J Geophys Res 110, C09013. doi:10.1029/2004JC002706

    Article  Google Scholar 

  • Fahl K, Stein R (1999) Biomarkers as organic-carbon-source and environmental indicators in the Late Quaternary Arctic Ocean: problems and perspectives. Mar Chem 63:293–309

    Article  Google Scholar 

  • Fahl K, Stein R (2007) Biomarker records, organic carbon accumulation, and river discharge in the Holocene southern Kara Sea (Arctic Ocean). Geo-Mar Lett 27:13–25

    Article  Google Scholar 

  • Fahl K, Stein R (2012) Modern seasonal variability and deglacial/Holocene change of central Arctic Ocean sea ice cover: new insights from biomarker proxy records. Earth Planet Sci Lett 351–352:123–133

    Article  Google Scholar 

  • Fahl K, Stein R, Gaye-Haake B, Gebhardt C, Kodina LA, Unger D, Ittekkot V (2003) Biomarkers in surface sediments from the Ob and Yenisei estuaries and southern Kara Sea: evidence for particulate organic carbon sources, pathways, and degradation. In: Stein R, Fahl K, Fütterer DK, Galimov EM, Stepanets OV (eds) Siberian river run-off in the Kara Sea: characterisation, quantification, variability, and environmental significance. Proceedings in Marine Sciences. Elsevier, Amsterdam, pp 329–348

    Google Scholar 

  • Fairbanks RG (1989) A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342:637–642

    Article  Google Scholar 

  • Faust JC, Fabian K, Milzer G, Giraudeau J, Knies J (2016) Norwegian fjord sediments reveal NAO related winter temperature and precipitation changes of the past 2800 years. Earth Planet Sci Lett 435:84–93

    Article  Google Scholar 

  • Forwick M, Vorren TO (2007) Holocene mass-transport activity and climate in outer Isfjorden, Spitsbergen: marine and subsurface evidence. The Holocene 17:707–716

    Article  Google Scholar 

  • Francis JA, Hunter E, Key JR, Wang X (2005) Clues to variability in Arctic minimum sea ice extent. Geophys Res Lett 32, L21501. doi:10.1029/2005GL024376

    Article  Google Scholar 

  • Funder S, Goosse H, Jepsen H, Kaas E, Kjær KH, Korsgaard NJ, Larsen NK, Linderson H, Lyså A, Möller P, Olsen J, Willerslev E (2011) A 10,000-Year record of Arctic Ocean sea-ice variability—view from the beach. Science 333(6043):747–750

    Article  Google Scholar 

  • Gordeev VV, Martin JM, Sidorov IS, Sidorova MV (1996) A reassessment of the Eurasian river input of water, sediment, major elements, and nutrients to the Arctic Ocean. Am J Sci 296:664–691

    Article  Google Scholar 

  • Grootes PM, Stuiver M, White JWC, Johnsen S, Jouzel J (1993) Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366:552–554

    Article  Google Scholar 

  • Hald M, Ebbesen H, Forwick M, Godtliebsen F, Khomenko L, Korsun S, Olsen LR, Vorren TO (2004) Holocene paleoceanography and glacial history of the West Spitsbergen area, Euro-Arctic margin. Quat Sci Rev 23:2075–2088

    Article  Google Scholar 

  • Hörner T, Stein R, Fahl K, Birgel D (2016) Post-glacial variability of sea ice cover, river run-off and biological production in the western Laptev Sea (Arctic Ocean) – a high-resolution biomarker study. Quat Sci Rev 143:133–149

    Article  Google Scholar 

  • Hu FS, Kaufman D, Yoneji S, Nelson D, Shemesh A, Huang Y, Tian J, Clegg B, Brown T (2003) Cyclic variation and solar forcing of Holocene climate in the Alaskan subarctic. Science 301(5641):1890–1893

    Article  Google Scholar 

  • Huang WY, Meinschein WG (1976) Sterols as source indicators of organic material in sediments. Geochim Cosmochim Acta 40:323–330

    Article  Google Scholar 

  • Huntley B, Baillie M, Grove JM, Hammer CU, Harrison SP, Jacomet S, Jansen E, Karlén W, Koç N, Luterbacher J, Negendank J, Schibler J (2002) Holocene palaeoenvironmental changes in north-west Europe: climatic implications and the human dimension. In: Wefer G, Berger WH, Behre K-E, Jansen E (eds) Climate development and history of the North Atlantic realm. Springer, Berlin, pp 259–298

    Chapter  Google Scholar 

  • Jakobsson M, Mayer LA, Coakley B, Dowdeswell JA, Forbes S et al (2012) The International Bathymetric Chart of the Arctic Ocean (IBCAO) version 3.0. Geophys Res Lett 39, L12609. doi:10.1029/2012GL052219

    Google Scholar 

  • Jansen HL, Simonsen JR, Dahl SO, Bakke J, Nielsen PR (2016) Holocene glacier and climate fluctuations of the maritime ice cap Høgtuvbreen, northern Norway. The Holocene 26(5):736–755

    Article  Google Scholar 

  • Jiang H, Muscheler R, Björck S, Seidenkrantz M-S, Olsen J, Scha L, Sjolte J, Eiríksson J, Ran L, Knudsen K-L, Knudsen MF (2015) Solar forcing of Holocene summer sea-surface temperatures in the northern North Atlantic. Geol Soc Am 43(3):203–206

    Google Scholar 

  • Johannessen OM, Bengtsson L, Miles MW, Kuzmina SI, Semenov VA, Alekseev GV, Nagurnyi AP, Zakharov VF, Bobylev LP, Pettersson LH (2004) Arctic climate change: observed and modelled temperature and sea ice variability. Tellus A 56:328–341

    Article  Google Scholar 

  • Karlén W (1993) Glaciological, sedimentological and paleobotanical data indicating Holocene climatic change in Northern Fennoscandia. In: Frenzel B (ed) Oscillations of alpine and polar tree limits in the Holocene. Gustav Fischer, Stuttgart, pp 69–83

    Google Scholar 

  • Keigwin LD, Pickart RS (1999) Slope water current over the Laurentian fan on interannual to millennial time scales. Science 286:520–523

    Article  Google Scholar 

  • Kinnard C, Zdanowicz CM, Fisher DA, Isaksson E, de Vernal A, Thompson LG (2011) Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature 479(7374):509–512

    Article  Google Scholar 

  • Koç N, Jansen E, Haflidason H (1993) Paleoceanographic reconstructions of surface ocean conditions in the Greenland, Iceland and Norwegian Seas through the last 14 ka based on diatoms. Quat Sci Rev 12:115–140

    Article  Google Scholar 

  • Kraus M, Matthiessen J, Stein R (2003) A high-resolution Holocene marine pollen record from the northern Yenisei Estuary (southeastern Kara Sea) and paleoenvironmental implications. In: Stein R, Fahl K, Fütterer DK, Galimov EM, Stepanets OV (eds) Siberian river run-off in the Kara Sea: characterisation, quantification, variability, and environmental significance. Proceedings in Marine Sciences. Elsevier, Amsterdam, pp 435–456

    Google Scholar 

  • Laskar J, Robutel P, Joutel F, Gastineau M, Correia A, Levrard B (2004) A long-term numerical solution for the insolation quantities of the Earth. Astron Astrophys 428:261–285

    Article  Google Scholar 

  • Lindsay RW, Zhang J (2005) Thinning of Arctic seas ice, 1988–2003: have we passed a tippling point? J Clim 18:4879–4894

    Article  Google Scholar 

  • Loeb V, Siegel V, Holm-Hansen O, Hewitt R, Fraser W, Trivelplece W, Trivelplece S (1997) Effects of sea ice extent and krill or salp dominance on the Antarctic food web. Nature 387:897–900

    Article  Google Scholar 

  • Lubinski DJ, Forman SL, Miller GH (1999) Holocene glacier and climate fluctuations on Franz Josef Land, Arctic Russia, 80°N. Quat Sci Rev 18(1):85–108

    Article  Google Scholar 

  • Luterbacher J, Xoplaki E, Dietrich D, Jones PD, Davies TD, Portis D, González-Rouco JF, von Storch H, Gyalistras D, Casty C, Wanner H (2001) Extending NAO reconstructions back to 1500. Atmos Sci Lett 2:114–124

    Article  Google Scholar 

  • Mangerud J, Gulliksen S (1975) Apparent radiocarbon ages of recent marine shells from Norway, Spitsbergen, and Arctic Canada. Quat Res 5:273–296

    Article  Google Scholar 

  • Maslanik J, Fowler C, Stroeve J, Drobot S, Zwally J, Yi D, Emery W (2007a) A younger, thinner Arctic ice cover: increased potential for rapid, extensive sea‐ice loss. Geophys Res Lett 34, L24501. doi:10.1029/2007GL032043

    Article  Google Scholar 

  • Maslanik J, Drobot S, Fowler C, Emery W, Barry R (2007b) On the Arctic climate paradox and the continuing role of atmospheric circulation in affecting sea ice conditions. Geophys Res Lett 34, L03711. doi:10.1029/2006GL028269

    Google Scholar 

  • Méheust M, Stein R, Fahl K, Max L, Riethdorf JR (2016) High-resolution IP25-based reconstruction of sea ice variability in the western North Pacific and Bering Sea during the past 18,000 years. Geo-Mar Lett 36:101–111

    Article  Google Scholar 

  • Meyers PA (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic and paleoclimatic processes. Org Geochem 27(5/6):213–250

    Article  Google Scholar 

  • Müller J, Stein R (2014) High-resolution record of late glacial and deglacial sea ice changes in Fram Strait corroborates ice-ocean interactions during abrupt climate shifts. Earth Planet Sci Lett 403:446–455

    Article  Google Scholar 

  • Müller J, Wagner A, Fahl K, Stein R, Prange M, Lohmann G (2011) Towards quantitative sea ice reconstructions in the northern North Atlantic: a combined biomarker and numerical modelling approach. Earth Planet Sci Lett 306:137–148

    Article  Google Scholar 

  • Müller J, Werner K, Stein R, Fahl K, Moros M, Jansen E (2012) Holocene cooling culminates in sea ice oscillations in Fram Strait. Quat Sci Rev 47:1–14

    Article  Google Scholar 

  • Nesje A, Matthews JA, Dahl SO, Berrisford MS, Andersson C (2001) Holocene glacier fluctuations of Flatebreen and winter-precipitation changes in the Jostedalsbreen region, western Norway, based on glaciolacustrine sediment records. The Holocene 11:267–280

    Article  Google Scholar 

  • Olsen J, Anderson NJ, Knudsen MF (2012) Variability of the North Atlantic Oscillation over the past 5,200 years. Nat Geosci 5:808–812

    Article  Google Scholar 

  • Overland JE, Wang M (2010) Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A 62:1–9

    Article  Google Scholar 

  • Paillard D, Labeyrie L, Yiou P (1996) Macintosh program performs time-series analysis. EOS Trans Am Geophys Union 77(39):379

    Article  Google Scholar 

  • Peterson BJ, Holmes RM, McClelland JW, Vörösmarty CJ, Lammers RB, Shiklomanov AI, Shiklomanov IA, Rahmstorf S (2002) Increasing river discharge to the Arctic Ocean. Science 298:2171–2173

    Article  Google Scholar 

  • Polyakova YI, Stein R (2004) Holocene paleoenvironmental implications of diatom and organic carbon records from the Southeastern Kara Sea (Siberian Margin). Quat Res 62:256–266

    Article  Google Scholar 

  • Rachold V, Eicken H, Gordeev VV, Grigoriev MN, Hubberten H-W, Lisitzin AP, Shevchenko VP, Schirmeister L (2004) Modern terrigenous organic carbon input to the Arctic Ocean. In: Stein R, Macdonald RW (eds) The Arctic Ocean organic carbon cycle: present and past. Springer, Berlin, pp 33–56

    Chapter  Google Scholar 

  • Rasmussen TL, Forwick M, Mackensen A (2012) Reconstruction of inflow of Atlantic Water to Isfjorden, Svalbard during the Holocene: correlation to climate and seasonality. Mar Micropaleontol 94–95:80–90

    Article  Google Scholar 

  • Rigor IG, Wallace JM (2004) Variations in the age of Arctic sea‐ice and summer sea‐ice extent. Geophys Res Lett 31, L09401. doi:10.1029/2004GL019492

    Article  Google Scholar 

  • Rimbu N, Lohmann G, Kim J-H, Arz HW, Schneider R (2003) Arctic/North Atlantic Oscillation signature in Holocene sea surface temperature trends as obtained from alkenone data. Geophys Res Lett 30(6):1280. doi:10.1029/2002GL016570

    Article  Google Scholar 

  • Sarnthein M, Van Kreveld S, Erlenkeuser H, Grootes PM, Kucera M, Pflaumann U, Schulz M (2003) Centennial-to-millennial-scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75°N. Boreas 32:447–461

    Article  Google Scholar 

  • Schulz M, Paul A (2002) Holocene climate variability on centennial-to-millennial time scales: 1. Climate records from the North-Atlantic realm. In: Wefer G, Berger WH, Behre KE, Jansen E (eds) Climate development and history of the North Atlantic realm. Springer, Berlin, pp 41–54

    Chapter  Google Scholar 

  • Seidenkrantz M-S, Roncaglia L, Fischel A, Heilmann-Clausen C, Kuijpers A, Moros M (2008) Variable North Atlantic climate seesaw patterns documented by a late Holocene marine record from Disko Bugt, West Greenland. Mar Micropaleontol 68(1/2):66–83

    Article  Google Scholar 

  • Seppä H, Birks HJB (2001) July mean temperature and annual precipitation trends during the Holocene in the Fennoscandian tree-line area: pollen-based climate reconstructions. The Holocene 11:527–537

    Article  Google Scholar 

  • Serreze MC, Holland MM, Stroeve J (2007) Perspectives on the Arctic’s shrinking sea ice cover. Science 315:1533–1536

    Article  Google Scholar 

  • Shiklomanov IA, Skakalsky BG (1994) Studying water, sediment and contaminant run-off of Siberian Rivers. Modern status and prospects. Archit Res US 8:295–306

    Google Scholar 

  • Simstich J, Stanovoy V, Bauch D, Erlenkeuser H, Spielhagen RF (2004) Holocene variability of bottom water hydrography on the Kara Sea shelf (Siberia) depicted in multiple single-valve analyses of stable isotopes in ostracods. Mar Geol 206:147–164

    Article  Google Scholar 

  • Smik L, Cabedo-Sanz P, Belt ST (2016) Semi-quantitative estimates of paleo Arctic sea ice concentration based on source-specific highly branched isoprenoid alkenes: a further development of the PIP25 index. Org Geochem 92:63–69

    Article  Google Scholar 

  • Smith SD, Muench RD, Pease CH (1990) Polynyas and leads: an overview of physical processes and environment. J Geophys Res 95(C69):9461–9479

    Article  Google Scholar 

  • Stein R, Stepanets OV (2001) The German–Russian project on Siberian River Run-Off (SIRRO): scientific cruise report of the Kara Sea expedition “SIRRO 2000” of RV “Akademik Boris Petrov” and first results. Rep Pol Mar Res 393

  • Stein R, Fahl K, Fütterer DK, Galimov EM, Stepanets OV (eds) (2003a) Siberian river run-off in the Kara Sea: characterisation, quantification, variability, and environmental significance. Proceedings in Marine Sciences. Elsevier, Amsterdam

  • Stein R, Fahl K, Dittmers K, Niessen F, Stepanets OV (2003b) Holocene siliciclastic and organic carbon fluxes in the Ob and Yenisei estuaries and the adjacent inner Kara Sea: quantification, variability, and paleoenvironmental implications. In: Stein R, Fahl K, Fütterer DK, Galimov EM, Stepanets OV (eds) Siberian river run-off in the Kara Sea: characterisation, quantification, variability, and environmental significance. Proceedings in Marine Sciences. Elsevier, Amsterdam, p 401–434

  • Stein R, Dittmers K, Fahl K, Kraus M, Matthiessen J, Niessen F, Pirrung M, Ye P, Schoster F, Steinke T, Fütterer DK (2004) Arctic (palaeo) river discharge and environmental change: evidence from Holocene Kara Sea sedimentary records. Quat Sci Rev 23:1485–1511

    Article  Google Scholar 

  • Stein R, Fahl K, Müller J (2012) Proxy reconstruction of Cenozoic Arctic Ocean sea ice history - from IRD to IP25. Polarforschung 82:37–71

    Google Scholar 

  • Stein R, Fahl K, Schreck M, Knorr G, Niessen F, Forwick M, Gebhardt C, Jensen L, Kaminski M, Kopf A, Matthiessen J, Jokat W, Lohmann G (2016a) Evidence for ice-free summers in the late Miocene central Arctic Ocean. Nat Commun 7:11148. doi:10.1038/ncomms11148

    Article  Google Scholar 

  • Stein R, Fahl K, Schade I, Manerung A, Wassmuth S, Niessen F, Nam S-I (2016b) Holocene variability in sea ice cover, primary production, and Pacific-Water inflow and climate change in the Chukchi and East Siberian Seas (Arctic Ocean). J Quat Sci. doi:10.1002/jqs.2929

    Google Scholar 

  • Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34, L09501. doi:10.1029/2007GL029703

    Article  Google Scholar 

  • Stroeve JC, Serreze MC, Holland MM, Kay JE, Malanik J, Barrett AP (2012) The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Clim Chang 110:1005–1027

    Article  Google Scholar 

  • Stuiver M, Grootes PM, Braziunas TF (1995) The GISP2 δ18O climate record of the past 16,500 years and the role of the sun, ocean, and volcanoes. Quat Res 44:341–354

    Article  Google Scholar 

  • Stuiver M, Reimer PJ, Braziunas TF (1998) High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40:1127–1152

    Article  Google Scholar 

  • Taldenkova E, Bauch HA, Gottschalk J, Nikolaev S, Rostovtseva Y, Pogodina I, Ovsepyan Y, Kandiano E (2010) History of ice-rafting and water mass evolution at the northern Siberian continental margin (Laptev Sea) during Late Glacial and Holocene times. Quat Sci Rev 29:3919–3935

    Article  Google Scholar 

  • Tarasov L, Peltier W (2005) Arctic freshwater forcing of the Younger Dryas cold reversal. Nature 435:662–665

    Article  Google Scholar 

  • Thompson DW, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300

    Article  Google Scholar 

  • Thompson DW, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13:1000–1016

    Article  Google Scholar 

  • Velichko AA, Dolukhanov PM, Rutter NW, Catto NR (1997) Quaternary of northern Eurasia: late Pleistocene and Holocene landscapes, stratigraphy and environments. Quat Int 41(42):43–51

    Article  Google Scholar 

  • Viau AE, Gajewski K, Sawada MC, Fines P (2006) Millennial-scale temperature variations in North America during the Holocene. J Geophys Res 111, D09102. doi:10.1029/2005JD006031

    Article  Google Scholar 

  • Volkman JK (1986) A review of sterol markers for marine and terrigenous organic matter. Org Geochem 9:83–99

    Article  Google Scholar 

  • Volkman JK (2006) Lipid markers for marine organic matter. In: Volkman JK (ed) Marine organic matter: biomarkers, isotopes and DNA. Springer, Berlin, pp 27–70

    Chapter  Google Scholar 

  • Volkman JK, Barrett SM, Dunstan GA, Jeffrey SW (1993) Geochemical significance of the occurrence of dinosterol and other 4-methyl sterols in a marine diatom. Org Geochem 20:7–15

    Article  Google Scholar 

  • Vorobyova GA (1994) Paleoclimates around Lake Baikal in Pleistocene and the Holocene. In: Baikal as a nature laboratory for global change, vol 2. Lisna, Irkutsk, pp 54–55

    Google Scholar 

  • Wanner H, Beer J, Bütikofer J, Crowley TJ, Cubasch U, Flückiger J, Goosse H, Grosjean M, Joos F, Kaplan JO, Küttel M, Müller SA, Prentice IC, Solomina O, Stocker TF, Tarasov P, Wagner M, Widmann M (2008) Mid- to Late Holocene climate change: an overview. Quat Sci Rev 27:1791–1828

    Article  Google Scholar 

  • Weckström K, Massé G, Collins LG, Hanhijärvi S, Bouloubassi I, Sicre MA, Seidenkrantz M-S, Schmidt S, Andersen TJ, Hill B, Kuijpers A (2013) Evaluation of the sea ice proxy IP25 against observational and diatom proxy data in the SW Labrador Sea. Quat Sci Rev 79:53–62

    Article  Google Scholar 

  • Willmes S, Heinemann G (2016) Sea-ice wintertime lead frequencies and regional characteristics in the Arctic, 2003-2015. Remote Sens 8:4. doi:10.3390/rs8010004

    Article  Google Scholar 

  • Zhang J, Lindsay R, Schweiger A, Rigor I (2012) Recent changes in the dynamic properties of declining Arctic sea ice: a model study. Geophys Res Lett 39, L20503. doi:10.1029/2012GL053545

    Google Scholar 

Download references

Acknowledgements

We thank all members of the BP00 campaign with the research vessel RV Akademik Boris Petrov as part of the German-Russian research project SIRRO (Siberian River Run-off), funded by the Federal Ministry of Education and Research, for providing the sediment material on which this study relies. Many thanks to the Federal Ministry of Education and Research (Transdrift, grant no. 03G0833B) and the Alfred Wegener Institute for funding this study. Thanks to Simon Belt and colleagues (Biogeochemistry Research Centre, University of Plymouth) for providing the internal standard for IP25 analysis. Also acknowledged are constructive comments from M.-S. Seidenkrantz and the editors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanja Hörner.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest with third parties.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hörner, T., Stein, R. & Fahl, K. Evidence for Holocene centennial variability in sea ice cover based on IP25 biomarker reconstruction in the southern Kara Sea (Arctic Ocean). Geo-Mar Lett 37, 515–526 (2017). https://doi.org/10.1007/s00367-017-0501-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-017-0501-y

Keywords

Navigation