Lunar recession encoded in tidal rhythmites: a selective overview with examples from Argentina

Abstract

The study of tides from the sedimentary record of tidal rhythmites, applying fast Fourier transform analysis, contributes to the understanding of the surficial evolution of our highly dynamic planet, and of the astronomical cycles that influenced the ancient tidal systems. This overview of lunar retreat rates, which includes examples from Argentina, displays a generalized pattern of nonlinear, progressively extended lunar cycles up to the present day. The lunar retreat calculated at different stages of the Earth’s history identifies three time spans of extremely high recession rates, amounting to almost twice that of the present day: Archean–Paleoproterozoic (6.93 cm/year), Neoproterozoic I–Ediacaran (7.01 cm/year) and Ediacaran–early Cambrian (6.48 cm/year). Older comparable recession rates are difficult to recognize because of the lack of tidal rhythmic sequences. The maximum lunar retreat rate is registered after the Copernican meteor bombardment event on the Moon at ~900 Ma, and the time span coincides with the continental dispersal of Rodinia. Every acceleration of the lunar retreat rate coincides with two main processes: (1) meteorite impacts on the Earth or Moon, and (2) reconfiguration of landmasses accompanied by earthquakes that generated changes in the rotational axis of the Earth, inundation surfaces, and glaciation/deglaciation processes. The simultaneous occurrence of such processes makes it difficult to distinguish the causes and effects of each individual process, but its conjunction would have promoted the destabilization of the Earth–Moon system in terms of moment of inertia that was transferred to the Moon rotation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Archer AW (1996) Reliability of lunar orbital periods extracted from ancient cyclic tidal rhythmites. Earth Planet Sci Lett 141:1–10

    Article  Google Scholar 

  2. Archer AW, Johnson T (1997) Modelling of cyclic tidal rhythmites (Carboniferous of Indiana and Kansas, Precambrian of Utah, USA) as a basis for reconstruction of intertidal positioning and paleotidal regimes. Sedimentology 44:991–1010

    Article  Google Scholar 

  3. Beukes NJ, Gutzmer J (2008) Origin and paleoenvironmental significance of major iron formations at the Archean-Paleoproterozoic boundary. Soc Econ Geol, SEG Reviews 15, chapter 1, p 5–47

  4. Bills BG, Ray RD (1999) Lunar orbital evolution: a synthesis of recent results. Geophys Res Lett 26(19):3045–3048

    Article  Google Scholar 

  5. Cavosie AJ (2014) Reconciling early impacts and the rice of life. Geology 5:463–464

    Article  Google Scholar 

  6. Coughenour CL, Archer AW, Lacovara KJ (2009) Tides, tidalites, and secular changes in the Earth–Moon system. Earth-Sci Rev 97:59–79

    Article  Google Scholar 

  7. Coughenour CL, Archer AW, Lacovara KJ (2013) Calculating Earth–Moon system parameters from sub-yearly tidal deposit records: an example from the carboniferous Tradewater formation. Sediment Geol 295:67–76

    Article  Google Scholar 

  8. De Boer PL, Oost AP, Visser MJ (1989) The diurnal inequality of the tide as a parameter for recognizing tidal influences. J Sediment Petrol 59(6):912–921

    Google Scholar 

  9. De Kock MO, Evans DAD, Beukes NJ (2009) Validating the existence of Vaalbara in the Neoarchean. Precambrian Res 174:145–154

    Article  Google Scholar 

  10. Deines SD, Williams CA (2016) Earth’s rotational deceleration: determination of tidal friction independent of timescales. Astron J 151(4):103

    Article  Google Scholar 

  11. Dickey JO, Bender P, Faller J, Newhall X, Ricklefs R, Ries J, Shelus P, Veillet C, Whipple A, Wiant J, Williams J, Yoder C (1994) Lunar laser ranging; a continuing legacy of the Apollo Program. Science 265:482–490

    Article  Google Scholar 

  12. Erickson TM, Cavosie AJ, Moser DE, Barker IR, Radovan HA, Wooden J (2013) Identification and provenance determination of distally transported, Vredefort-derived shocked minerals in the Vaal River, South Africa using SEM and SHRIMP-RG techniques. Geochim Cosmochim Acta 107:170–188

    Article  Google Scholar 

  13. Eriksson KA, Simpson AL (2000) Quantifying the oldest tidal record: the 3.2 Ga Moodies Group, Barberton Greenstone Belt, South Africa. Geology 28(9):831–834

    Article  Google Scholar 

  14. Eriksson KA, Krapez B, Fralick PW (1994) Sedimentology of Archean greenstone belts: signatures of tectonic evolution. Earth Sci Rev 37:1–88

    Article  Google Scholar 

  15. Fjeldskaar W (1991) Geoidal-eustatic changes induced by the deglaciation of Fennoscandia. Quat Int 9:1–6

    Article  Google Scholar 

  16. Grieve RAF (1991) Terrestrial impact: the record in the rocks. Meteoritics 26:175–194

    Article  Google Scholar 

  17. Gross RS, Chao BF (2000) The gravitational signature of earthquakes. Series of International Association of Geodesy Symp, Gravity, Geoid and Geodynamics, vol 123, p 205–210

  18. Holland HD (1973) The oceans: a possible source of iron in iron-formations. Econ Geol 68(7):1169–1172

    Article  Google Scholar 

  19. Kagan BA (1997) Earth-Moon tidal evolution: model results and observational evidence. Prog Oceanogr 40:109–124

    Article  Google Scholar 

  20. Kagan BA, Sündermann J (1996) Dissipation of tidal energy, paleotides, and evolution of the Earth-Moon system. Adv Geophys 38:179–266

    Article  Google Scholar 

  21. Kvale EP, Archer AW (1990) Tidal deposits associated with low-sulfur coals, Brazil Fm (Lower Pennsylvanian), Indiana. J Sediment Petrol 60:563–574

    Google Scholar 

  22. Kvale EP, Cutright J, Bilodeau D, Archer AW, Johnson HR, Pickett B (1995) Analysis of modern tides and implications for ancient tidalites. Cont Shelf Res 15:1921–1943

    Article  Google Scholar 

  23. Kvale EP, Johnson HR, Sonett C, Archer AW, Zawistoski A (1999) Calculating lunar retreat rates using tidal rhythmites. J Sediment Res 69:1154–1168

    Article  Google Scholar 

  24. Lemaître A (2010) Resonances: models and captures. In: Souchay JJ, Dvorak R (eds) Dynamics of small solar system bodies and exoplanets. Lect Notes Phys 790, p 1–62

  25. Lewy Z (2012) Banded Iron Formations (BIFs) and associated sediments do not reflect the physical and chemical properties of Early Precambrian seas. Int J Geosci 3:226–236

    Article  Google Scholar 

  26. Lewy Z (2013) Life on Earth originated where later microbial oxygenic photosynthesis precipitated banded iron formation, suppressing life diversification for 1.4 Ga. Int J Geosci 4:1382–1391

    Article  Google Scholar 

  27. Lliboutry L (2000) Quantitative geophysics and geology. Springer Praxis, Chichester

    Google Scholar 

  28. López de Azarevich VL (2010) Advances in harmonic analysis of tidal rhythmites in the Puncoviscana Formation (Proterozoic-Early Cambrian), northwest Argentina. In: 18th International Sedimentological Congress, Abstract 606. Mendoza, Argentina

  29. López de Azarevich VL, Azarevich MB, Omarini RH (2010) Nuevas metodologías aplicadas al estudio de secuencias sedimentarias de plataforma en el basamento Ediacarano-Cámbrico inferior del NO argentino (Formación Puncoviscana). In: Aceñolaza F (ed) Ediacarano-Cámbrico Inferior Gondwana I. INSUGEO-UNT, Serie Correlación Geológica 26, p 103–120

  30. Mazumder R, Arima M (2005) Tidal rhythmites and their implications. Earth-Sci Rev 69:79–95

    Article  Google Scholar 

  31. Merino M, Monreal Gómez MA (2009) Ocean currents and their impact in marine life. In: Duarte CM, Helgueral AL (eds) Marine ecology. Encyclopedia of Life Support Systems. EOLSS Publishers, Oxford, vol 1, p 52–47

  32. Morris RC (1993) Genetic modelling for Banded Iron-Formation of the Hamersley Group, Pilbara Craton, Western Australia. Precambrian Res 60(1-4):243–286

    Article  Google Scholar 

  33. Ogg JG, Ogg G, Gradstein FM (2008) The concise geological time scale. Cambridge University Press, Cambridge

    Google Scholar 

  34. Ross MN, Schubert G (1989) Evolution of the lunar orbit with temperature- and frequency-dependent dissipation. J Geophys Res 94:9533–9544

    Article  Google Scholar 

  35. Sankaran AV (2003) The supercontinent medley: recent views. Curr Sci 85(8):1121–1124

    Google Scholar 

  36. Scotese CR (2001) Atlas of Earth History. Paleomap Project, Arlington

    Google Scholar 

  37. Shibuya T, Aoki K, Komiya T, Maruyama S (2010) Stratigraphy-related, low-pressure metamorphism in the Hardey Syncline, Hamersley Province, Western Australia. Gondwana Res 18:213–221

    Article  Google Scholar 

  38. Sonett CP, Chan MA (1998) Neoproterozoic Earth-Moon dynamics: rework of the 900 Ma Big Cottonwood Canyon tidal rhythmites. Geophys Res Lett 25:539–542

    Article  Google Scholar 

  39. Sonett CP, Kvale EP, Zakharian A, Chan MA, Demko TM (1996) Late Proterozoic and Palaeozoic tides, retreat of the Moon, and rotation of the Earth. Science 273:100–104

    Article  Google Scholar 

  40. Tera F, Papanastassiou DA, Wasserburg GJ (1973) A lunar cataclysm at ~3.95 AE and the structure of the lunar crust. In: Abstracts Lunar and Planetary Science Conf 4, p 723–725

  41. Thomas M, Clarke JDA, Gostin VA, Williams GE, Walter MW (2012) The Flinders Ranges and surrounds, South Australia: a window on astrobiology and planetary geology. Episodes 35:226–235

    Google Scholar 

  42. Touma J, Wisdom J (1998) Resonances in the early evolution of the earth-moon system. Astron J 115:1653–1663

    Article  Google Scholar 

  43. Trendall AF (1973) Varve cycles in the Weeli Wolli Formation of the Precambrian Hamersley Group, Western Australia. Econ Geol 68(7):1089–1097

    Article  Google Scholar 

  44. Visser MJ (1980) Neap-spring cycles reflected in Holocene subtidal large-scale bedform deposits: a preliminary note. Geology 8:543–546

    Article  Google Scholar 

  45. Walker JCG, Zahnle KJ (1986) Lunar nodal tide and distance to the Moon during the Precambrian. Nature 320:600–602

    Article  Google Scholar 

  46. Webb DJ (1982) Tides and the evolution of the Earth-Moon system. Geophys J R Astron Soc 70:261–271

    Article  Google Scholar 

  47. Williams GE (2000) Geological constraints on the Precambrian history of Earth’s rotation and the Moon’s orbit. Rev Geophys 38:37–59

    Article  Google Scholar 

  48. Williams GE, Gostin VA (2010) Geomorphology of the Acraman impact structure, Gawler Ranges, South Australia. Cadernos Lab Xeolóxico de Laxe, Coruña 35:209–220

    Google Scholar 

  49. Yang C-S, Nio S-D (1985) The estimation of paleohydrodynamics processes from subtidal deposits using time series analysis methods. Sedimentology 32:41–57

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the research project no. 2037 of the Consejo de Investigaciones de la Universidad Nacional de Salta (CIUNSa), with academic support from CEGA-INSUGEO-CONICET. The guest editor R.A. Scasso, as well as A.J. van Loon, an anonymous reviewer and the journal editors are thanked for their insightful comments and suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vanina L. López de Azarevich.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest with third parties.

Additional information

Responsible guest editor: R.A. Scasso

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Table 1

(DOCX 26 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Azarevich, V.L.L., Azarevich, M.B. Lunar recession encoded in tidal rhythmites: a selective overview with examples from Argentina. Geo-Mar Lett 37, 333–344 (2017). https://doi.org/10.1007/s00367-017-0500-z

Download citation

Keywords

  • Cambrian
  • Lunar Surface
  • Rodinia
  • Band Iron Formation
  • Lunar Cycle