Geo-Marine Letters

, Volume 37, Issue 4, pp 333–344 | Cite as

Lunar recession encoded in tidal rhythmites: a selective overview with examples from Argentina

  • Vanina L. López de AzarevichEmail author
  • Miguel B. Azarevich


The study of tides from the sedimentary record of tidal rhythmites, applying fast Fourier transform analysis, contributes to the understanding of the surficial evolution of our highly dynamic planet, and of the astronomical cycles that influenced the ancient tidal systems. This overview of lunar retreat rates, which includes examples from Argentina, displays a generalized pattern of nonlinear, progressively extended lunar cycles up to the present day. The lunar retreat calculated at different stages of the Earth’s history identifies three time spans of extremely high recession rates, amounting to almost twice that of the present day: Archean–Paleoproterozoic (6.93 cm/year), Neoproterozoic I–Ediacaran (7.01 cm/year) and Ediacaran–early Cambrian (6.48 cm/year). Older comparable recession rates are difficult to recognize because of the lack of tidal rhythmic sequences. The maximum lunar retreat rate is registered after the Copernican meteor bombardment event on the Moon at ~900 Ma, and the time span coincides with the continental dispersal of Rodinia. Every acceleration of the lunar retreat rate coincides with two main processes: (1) meteorite impacts on the Earth or Moon, and (2) reconfiguration of landmasses accompanied by earthquakes that generated changes in the rotational axis of the Earth, inundation surfaces, and glaciation/deglaciation processes. The simultaneous occurrence of such processes makes it difficult to distinguish the causes and effects of each individual process, but its conjunction would have promoted the destabilization of the Earth–Moon system in terms of moment of inertia that was transferred to the Moon rotation.


Cambrian Lunar Surface Rodinia Band Iron Formation Lunar Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was funded by the research project no. 2037 of the Consejo de Investigaciones de la Universidad Nacional de Salta (CIUNSa), with academic support from CEGA-INSUGEO-CONICET. The guest editor R.A. Scasso, as well as A.J. van Loon, an anonymous reviewer and the journal editors are thanked for their insightful comments and suggestions.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest with third parties.

Supplementary material

367_2017_500_MOESM1_ESM.docx (26 kb)
ESM Table 1 (DOCX 26 kb)


  1. Archer AW (1996) Reliability of lunar orbital periods extracted from ancient cyclic tidal rhythmites. Earth Planet Sci Lett 141:1–10CrossRefGoogle Scholar
  2. Archer AW, Johnson T (1997) Modelling of cyclic tidal rhythmites (Carboniferous of Indiana and Kansas, Precambrian of Utah, USA) as a basis for reconstruction of intertidal positioning and paleotidal regimes. Sedimentology 44:991–1010CrossRefGoogle Scholar
  3. Beukes NJ, Gutzmer J (2008) Origin and paleoenvironmental significance of major iron formations at the Archean-Paleoproterozoic boundary. Soc Econ Geol, SEG Reviews 15, chapter 1, p 5–47Google Scholar
  4. Bills BG, Ray RD (1999) Lunar orbital evolution: a synthesis of recent results. Geophys Res Lett 26(19):3045–3048CrossRefGoogle Scholar
  5. Cavosie AJ (2014) Reconciling early impacts and the rice of life. Geology 5:463–464CrossRefGoogle Scholar
  6. Coughenour CL, Archer AW, Lacovara KJ (2009) Tides, tidalites, and secular changes in the Earth–Moon system. Earth-Sci Rev 97:59–79CrossRefGoogle Scholar
  7. Coughenour CL, Archer AW, Lacovara KJ (2013) Calculating Earth–Moon system parameters from sub-yearly tidal deposit records: an example from the carboniferous Tradewater formation. Sediment Geol 295:67–76CrossRefGoogle Scholar
  8. De Boer PL, Oost AP, Visser MJ (1989) The diurnal inequality of the tide as a parameter for recognizing tidal influences. J Sediment Petrol 59(6):912–921Google Scholar
  9. De Kock MO, Evans DAD, Beukes NJ (2009) Validating the existence of Vaalbara in the Neoarchean. Precambrian Res 174:145–154CrossRefGoogle Scholar
  10. Deines SD, Williams CA (2016) Earth’s rotational deceleration: determination of tidal friction independent of timescales. Astron J 151(4):103CrossRefGoogle Scholar
  11. Dickey JO, Bender P, Faller J, Newhall X, Ricklefs R, Ries J, Shelus P, Veillet C, Whipple A, Wiant J, Williams J, Yoder C (1994) Lunar laser ranging; a continuing legacy of the Apollo Program. Science 265:482–490CrossRefGoogle Scholar
  12. Erickson TM, Cavosie AJ, Moser DE, Barker IR, Radovan HA, Wooden J (2013) Identification and provenance determination of distally transported, Vredefort-derived shocked minerals in the Vaal River, South Africa using SEM and SHRIMP-RG techniques. Geochim Cosmochim Acta 107:170–188CrossRefGoogle Scholar
  13. Eriksson KA, Simpson AL (2000) Quantifying the oldest tidal record: the 3.2 Ga Moodies Group, Barberton Greenstone Belt, South Africa. Geology 28(9):831–834CrossRefGoogle Scholar
  14. Eriksson KA, Krapez B, Fralick PW (1994) Sedimentology of Archean greenstone belts: signatures of tectonic evolution. Earth Sci Rev 37:1–88CrossRefGoogle Scholar
  15. Fjeldskaar W (1991) Geoidal-eustatic changes induced by the deglaciation of Fennoscandia. Quat Int 9:1–6CrossRefGoogle Scholar
  16. Grieve RAF (1991) Terrestrial impact: the record in the rocks. Meteoritics 26:175–194CrossRefGoogle Scholar
  17. Gross RS, Chao BF (2000) The gravitational signature of earthquakes. Series of International Association of Geodesy Symp, Gravity, Geoid and Geodynamics, vol 123, p 205–210Google Scholar
  18. Holland HD (1973) The oceans: a possible source of iron in iron-formations. Econ Geol 68(7):1169–1172CrossRefGoogle Scholar
  19. Kagan BA (1997) Earth-Moon tidal evolution: model results and observational evidence. Prog Oceanogr 40:109–124CrossRefGoogle Scholar
  20. Kagan BA, Sündermann J (1996) Dissipation of tidal energy, paleotides, and evolution of the Earth-Moon system. Adv Geophys 38:179–266CrossRefGoogle Scholar
  21. Kvale EP, Archer AW (1990) Tidal deposits associated with low-sulfur coals, Brazil Fm (Lower Pennsylvanian), Indiana. J Sediment Petrol 60:563–574Google Scholar
  22. Kvale EP, Cutright J, Bilodeau D, Archer AW, Johnson HR, Pickett B (1995) Analysis of modern tides and implications for ancient tidalites. Cont Shelf Res 15:1921–1943CrossRefGoogle Scholar
  23. Kvale EP, Johnson HR, Sonett C, Archer AW, Zawistoski A (1999) Calculating lunar retreat rates using tidal rhythmites. J Sediment Res 69:1154–1168CrossRefGoogle Scholar
  24. Lemaître A (2010) Resonances: models and captures. In: Souchay JJ, Dvorak R (eds) Dynamics of small solar system bodies and exoplanets. Lect Notes Phys 790, p 1–62Google Scholar
  25. Lewy Z (2012) Banded Iron Formations (BIFs) and associated sediments do not reflect the physical and chemical properties of Early Precambrian seas. Int J Geosci 3:226–236CrossRefGoogle Scholar
  26. Lewy Z (2013) Life on Earth originated where later microbial oxygenic photosynthesis precipitated banded iron formation, suppressing life diversification for 1.4 Ga. Int J Geosci 4:1382–1391CrossRefGoogle Scholar
  27. Lliboutry L (2000) Quantitative geophysics and geology. Springer Praxis, ChichesterGoogle Scholar
  28. López de Azarevich VL (2010) Advances in harmonic analysis of tidal rhythmites in the Puncoviscana Formation (Proterozoic-Early Cambrian), northwest Argentina. In: 18th International Sedimentological Congress, Abstract 606. Mendoza, ArgentinaGoogle Scholar
  29. López de Azarevich VL, Azarevich MB, Omarini RH (2010) Nuevas metodologías aplicadas al estudio de secuencias sedimentarias de plataforma en el basamento Ediacarano-Cámbrico inferior del NO argentino (Formación Puncoviscana). In: Aceñolaza F (ed) Ediacarano-Cámbrico Inferior Gondwana I. INSUGEO-UNT, Serie Correlación Geológica 26, p 103–120Google Scholar
  30. Mazumder R, Arima M (2005) Tidal rhythmites and their implications. Earth-Sci Rev 69:79–95CrossRefGoogle Scholar
  31. Merino M, Monreal Gómez MA (2009) Ocean currents and their impact in marine life. In: Duarte CM, Helgueral AL (eds) Marine ecology. Encyclopedia of Life Support Systems. EOLSS Publishers, Oxford, vol 1, p 52–47Google Scholar
  32. Morris RC (1993) Genetic modelling for Banded Iron-Formation of the Hamersley Group, Pilbara Craton, Western Australia. Precambrian Res 60(1-4):243–286CrossRefGoogle Scholar
  33. Ogg JG, Ogg G, Gradstein FM (2008) The concise geological time scale. Cambridge University Press, CambridgeGoogle Scholar
  34. Ross MN, Schubert G (1989) Evolution of the lunar orbit with temperature- and frequency-dependent dissipation. J Geophys Res 94:9533–9544CrossRefGoogle Scholar
  35. Sankaran AV (2003) The supercontinent medley: recent views. Curr Sci 85(8):1121–1124Google Scholar
  36. Scotese CR (2001) Atlas of Earth History. Paleomap Project, ArlingtonGoogle Scholar
  37. Shibuya T, Aoki K, Komiya T, Maruyama S (2010) Stratigraphy-related, low-pressure metamorphism in the Hardey Syncline, Hamersley Province, Western Australia. Gondwana Res 18:213–221CrossRefGoogle Scholar
  38. Sonett CP, Chan MA (1998) Neoproterozoic Earth-Moon dynamics: rework of the 900 Ma Big Cottonwood Canyon tidal rhythmites. Geophys Res Lett 25:539–542CrossRefGoogle Scholar
  39. Sonett CP, Kvale EP, Zakharian A, Chan MA, Demko TM (1996) Late Proterozoic and Palaeozoic tides, retreat of the Moon, and rotation of the Earth. Science 273:100–104CrossRefGoogle Scholar
  40. Tera F, Papanastassiou DA, Wasserburg GJ (1973) A lunar cataclysm at ~3.95 AE and the structure of the lunar crust. In: Abstracts Lunar and Planetary Science Conf 4, p 723–725Google Scholar
  41. Thomas M, Clarke JDA, Gostin VA, Williams GE, Walter MW (2012) The Flinders Ranges and surrounds, South Australia: a window on astrobiology and planetary geology. Episodes 35:226–235Google Scholar
  42. Touma J, Wisdom J (1998) Resonances in the early evolution of the earth-moon system. Astron J 115:1653–1663CrossRefGoogle Scholar
  43. Trendall AF (1973) Varve cycles in the Weeli Wolli Formation of the Precambrian Hamersley Group, Western Australia. Econ Geol 68(7):1089–1097CrossRefGoogle Scholar
  44. Visser MJ (1980) Neap-spring cycles reflected in Holocene subtidal large-scale bedform deposits: a preliminary note. Geology 8:543–546CrossRefGoogle Scholar
  45. Walker JCG, Zahnle KJ (1986) Lunar nodal tide and distance to the Moon during the Precambrian. Nature 320:600–602CrossRefGoogle Scholar
  46. Webb DJ (1982) Tides and the evolution of the Earth-Moon system. Geophys J R Astron Soc 70:261–271CrossRefGoogle Scholar
  47. Williams GE (2000) Geological constraints on the Precambrian history of Earth’s rotation and the Moon’s orbit. Rev Geophys 38:37–59CrossRefGoogle Scholar
  48. Williams GE, Gostin VA (2010) Geomorphology of the Acraman impact structure, Gawler Ranges, South Australia. Cadernos Lab Xeolóxico de Laxe, Coruña 35:209–220Google Scholar
  49. Yang C-S, Nio S-D (1985) The estimation of paleohydrodynamics processes from subtidal deposits using time series analysis methods. Sedimentology 32:41–57CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Centro de Estudios Geológicos Andinos (CEGA), Instituto Superior de Correlación Geológica (INSUGEO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Universidad Nacional de SaltaSaltaArgentina
  2. 2.Centro de Estudios Geológicos Andinos (CEGA), Instituto Superior de Correlación Geológica (INSUGEO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)SaltaArgentina

Personalised recommendations