Abstract
Subaqueous landslides and their consequences, such as tsunamis, can cause serious damage to offshore infrastructure and coastal communities. Stability analyses of submerged slopes are therefore crucial, yet complex steps for hazard assessment, as many geotechnical and morphological factors need to be considered. Typically, deterministic models with data from a few sampling locations are used for the evaluation of slope stabilities, as high efforts are required to ensure high spatial data coverage. This study presents a simple but flexible approach for the probabilistic stability assessment of subaqueous slopes that takes into account the spatial variability of geotechnical data. The study area (~2 km2) in Lake Zurich (northern Switzerland) shows three distinct subaquatic landslides with well-defined headscarps, translation areas (i.e. the zone where translational sliding occurred) and mass transport deposits. The ages of the landslides are known (~2,210 and ~640 cal. yr BP, and 1918 AD), and their triggers have been assigned to different mechanisms by previous studies. A combination of geophysical, geotechnical, and sedimentological methods served to analyse the subaquatic slope in great spatial detail: 3.5 kHz pinger seismic reflection data and a 300 kHz multibeam bathymetric dataset (1 m grid) were used for the detection of landslide features and for the layout of a coring and an in situ cone penetration testing campaign. The assignment of geotechnical data to lithological units enabled the construction of a sediment-mechanical stratigraphy that consists of four units, each with characteristic profiles of bulk density and shear strength. The thickness of each mechanical unit can be flexibly adapted to the local lithological unit thicknesses identified from sediment cores and seismic reflection profiles correlated to sediment cores. The sediment-mechanical stratigraphy was used as input for a Monte Carlo simulated limit-equilibrium model on an infinite slope for the assessment of the present slope stability and for a back analysis of past landslides in the study area, both for static and earthquake-triggered scenarios. The results show that the location of failure initiation in the model is consistent with stratigraphic analysis and failure-plane identification from sediment cores. Furthermore, today’s sediment-charged slopes are failure-prone, even for a static case. This approach of including an adaptable sediment-mechanical stratigraphy into a limit-equilibrium slope stability analysis may be applied as well to the marine realm.
This is a preview of subscription content, access via your institution.










References
Abramson LW, Lee TS, Sharma S, Boyce GM (2002) Slope stability and stabilization methods, 2nd edn. Wiley, New York
Biscontin G, Pestana JM (2006) Factors affecting seismic response of submarine slopes. Nat Hazards Earth Syst Sci 6:97–107. doi:10.5194/nhess-6-97-2006
Bitterli T, George M, Matousek F, Christe R, Brändli R, Frey D (2004) Grundwasservorkommen. In: Hydrologischer Atlas der Schweiz, Tafel 8.6. Bundesamt für Umwelt, Bern
Blum P (1997) Physical properties handbook, ODP Tech Note 26. doi:10.2973/odp.tn.26.1997
Bornhold B, Prior DB (1990) Morphology and sedimentary processes on the subaqueous Noeick River delta, British Columbia, Canada. In: Colella A, Prior DB (eds) Coarse-grained deltas. Blackwell, Oxford, pp 169–181
Chandler DS (1996) Monte Carlo simulation to evaluate slope stability. In: Shakelford C, Nelson PP, Roth MJS (eds) Uncertainty in the geologic environment: from theory to practice. American Society of Civil Engineers, New York, pp 474–493
Chapron E, Van Rensbergen P, De Batist M, Beck C, Henriet JP (2004) Fluid-escape features as a precursor of a large sublacustrine sediment slide in Lake Le Bourget, NW Alps, France. Terra Nov. 16:305–311. doi:10.1111/j.1365-3121.2004.00566.x
Coduto DP, Yeung MR, Kitch WA (2011) Geotechnical engineering: principles and practices, 2nd edn. Prentice Hall, Upper Saddle River
Craig RF (2004) Craig’s soil mechanics, 7th edn. Spon Press, New York
Dan G, Sultan N, Savoye B (2007) The 1979 Nice harbour catastrophe revisited: trigger mechanism inferred from geotechnical measurements and numerical modelling. Mar Geol 245:40–64. doi:10.1016/j.margeo.2007.06.011
Flood RD, Shor AN, Manley PL (1993) Morphology of abyssal mudwaves at project MUDWAVES sites in the Argentine Basin. Deep-Sea Research Part II: Topical Studies in Oceanography 40(4–5): 40:859–888. doi:10.1016/0967-0645(93)90038-O
Giovanoli F (1979) Die remanente Magnetisierung von Seesedimenten. PhD Thesis Nr. 6350, ETH Zürich
Gyger M, Müller-Vonmoos M, Schindler C (1976) Untersuchungen zur Klassifikation spät- und nacheiszeitlicher Sedimente aus dem Zürichsee. Schweiz Mineral Petrogr Mitt 56:387–406
Heim A (1876) Bericht und Expertengutachten über die im Februar und September 1875 in Horgen am Zürichsee vorgekommenen Rutschungen. Die Eisenbahn 4:191–196
Hein FJ, Longstaffe FJ (1985) Sedimentologic, mineralogic, and geotechnical descriptions of fine-grained slope and basin deposits, Baffin Island Fiords. Geo-Mar Lett 5:11–16. doi:10.1007/BF02629791
Huder J (1963) Bestimmung der Scherfestigkeit strukturempfindlicher Böden unter besonderer Berücksichtigung der Seekreide. Mitt Versuchsanstalt Wasserbau Erdbau Eidgenössischen Tech Hochschule Zürich 58:1–35
Jiang L, Leblond PH (1992) The coupling of a submarine slide and the surface. J Geophys Res 97:12731–12744
Jibson RW (1993) Predicting earthquake-induced landslide displacements using Newmark’s sliding block analysis. Transp Res Rec 1411:9–17
Jibson RW (2012) Models of the triggering of landslides during earthquakes. In: Clague JJ, Stead D (eds) Landslides: types, mechanisms and modeling. Cambridge University Press, Cambridge, pp 196–206. doi:10.1017/CBO9780511740367.018
Johari A, Javadi AA (2012) Reliability assessment of infinite slope stability using the jointly distributed random variables method. Sci Iran 19:423–429. doi:10.1016/j.scient.2012.04.006
Kelts K (1978) Geological and sedimentary evolution of Lakes Zurich and Zug, Switzerland. PhD Thesis Nr. 6146, ETH Zurich
Kelts K, Hsü KJ (1980) Resedimented facies of 1875 Horgen slumps in Lake Zurich and a process model of longitudinal transport of turbidity currents. Eclogae Geol Helv 73:271–281
Kelts K, Briegel U, Ghilardi K, Hsu K (1986) The limnogeology-ETH coring system. Swiss J Hydrol 48:104–115. doi:10.1007/BF02544119
Klaucke I, Cochonat P (1999) Analysis of past seafloor failures on the continental slope off Nice (SE France). Geo-Mar Lett 19:245–253
Kohv M, Talviste P, Hang T, Kalm V, Rosentau A (2009) Slope stability and landslides in proglacial varved clays of western Estonia. Geomorphology 106:315–323. doi:10.1016/j.geomorph.2008.11.013
Kramer SL (1996) Geotechnical earthquake engineering. Prentice-Hall, Upper Saddle River
Laberg J, Vorren TO, Mienert J, Haflidason H, Bryn P, Lien R (2003) Preconditions leading to the Holocene Trænadjupet Slide. In: Submarine mass movements and their consequences, vol 19. Springer, Heidelberg, pp 247–254
Lacasse S, Nadim F (1996) Uncertainties in characterising soil properties. In: Shackelford CD, Nelson PP, Roth MJS (eds) Uncertainty in the geologic environment: from theory to practice. American Society of Civil Engineers, New York, pp 49–75
Leroueil S, Vaunat J, Picarelli L, Locat J, Lee H, Faure R (1996) Geotechnical characterisation of slope movements. In: Senneset K (ed) Landslides, 1st edn. Balkema, Rotterdam, pp 53–74
Leynaud D, Sultan N (2010) 3-D slope stability analysis: a probability approach applied to the Nice slope (SE France). Mar Geol 269:89–106. doi:10.1016/j.margeo.2009.12.002
Leynaud D, Mienert J, Nadim F (2004) Slope stability assessment of the Helland Hansen area offshore the mid-Norwegian margin. Mar Geol 213:457–480. doi:10.1016/j.margeo.2004.10.019
Lister GS, Giovanoli F, Eberli G, Finckh P, Finger W, He Q, Heim C, Hsü KJ, Kelts K, Peng C, Sidler C, Zhao X (1984) Late Quaternary sediments in Lake Zurich, Switzerland. Environ Geol 5:191–205
Locat J, Lee HJ (2002) Submarine landslides: advances and challenges. Can Geotech J 39:193–212. doi:10.1139/t01-089
Lunne T, Robertson PK, Powell JJM (2002) Cone penetration testing in geotechnical practice, 2nd edn. Spon Press, London
Masson DG, Harbitz CB, Wynn RB, Pedersen G, Løvholt F (2006) Submarine landslides: processes, triggers and hazard prediction. Philos Trans A Math Phys Eng Sci 364:2009–2039. doi:10.1098/rsta.2006.1810
Morgenstern NR, Price VE (1967) A numerical method for solving the equations of stability of general slip surfaces. Comput J 9:388–393
Mosher DC, Thomson RE (2002) The Foreslope Hills: large-scale, fine-grained sediment waves in the Strait of Georgia, British Columbia. Mar Geol 192:275–295. doi:10.1016/S0025-3227(02)00559-5
Nadim F, Einstein H, Roberds W (2005) Probabilistic stability analysis for individual slopes in soil and rock. In: Hungr O, Fell R, Couture R, Eberhard E (eds) Landslide risk management. Taylor & Francis, Boca Raton, p 764
Newmark NM (1965) Effects of earthquakes on dams and embarkments. Geotechnique 2:139–160
Nipkow F (1927) Über das Verhalten der Skelette planktischer Kieselalagen im geschichteten Tiefenschlamm des Zürich- und Baldeggersees. PhD Thesis Nr. 455, ETH Zurich
Parsons JD, Bush JWM, Syvitski JPM (2001) Hyperpycnal plume formation from riverine outflows with small sediment concentrations. Sedimentology 48:465–478. doi:10.1046/j.1365-3091.2001.00384.x
Prior DB, Coleman JM, Bornhold BD (1982) Results of a known seafloor instability event. Geo-Mar Lett 2:117–122. doi:10.1007/BF02462751
Puzrin AM, Germanovich LN (2005) The growth of shear bands in the catastrophic failure of soils. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 461:1199–1228. doi:10.1098/rspa.2001.1378
Schindler C (1974) Zur Geologie des Zürichsees. Eclogae Geol Helv 67:163–196
Schindler C (1976) Eine geologische Karte des Zürichsees und ihre Deutung. Eclogae Geol Helv 69:125–138
Schindler CM (1996) Aussergewöhnliche Rutschungen, Felsstürze und Murgänge. In: Instabile Hänge und andere risikorelevante natürliche Prozesse. Birkhäuser, Basel, pp 73–84
Schindler C, Gyger M (1989) The landslides of Zug seen 100 years after the analysis of Albert Heim. In: Bonnard C (ed) Rutschungsphänomene im Gebiet des Alpenbogens. Balkema, Rotterdam, pp 123–126
Schlüchter C (1984) Geotechnical properties of Zübo sediments. In: Hsü KJ, Kelts K (eds) Quaternary geology of Lake Zurich: an interdisciplinary investigation by deep-lake drilling. Schweizerbart, Stuttgart, pp 135–140
Schnellmann M, Anselmetti FS, Giardini D, McKenzie JA, Ward SN (2002) Prehistoric earthquake history revealed by lacustrine slump deposits. Geology 30:1131–1134. doi:10.1130/0091-7613(2002)030<1131:PEHRBL>2.0.CO;2
Schnellmann M, Anselmetti FS, Giardini D, McKenzie JA (2005) Mass movement-induced fold-and-thrust belt structures in unconsolidated sediments in Lake Lucerne (Switzerland). Sedimentology 52:271–289. doi:10.1111/j.1365-3091.2004.00694.x
Schnellmann M, Anselmetti FS, Giardini D, McKenzie JA (2006) 15,000 years of mass-movement history in Lake Lucerne: implications for seismic and tsunami hazards. Eclogae Geol Helv 99:409–428. doi:10.1007/s00015-006-1196-7
Schwarz-Zanetti G, Fäh D (2011) Grundlagen des Makroseismischen Erdbebenkatalogs der Schweiz Band 1:1000–1680. vdf Hochschulverlag AG, Zürich
Shillington DJ, Seeber L, Sorlien CC, Steckler MS, Kurt H, Dondurur D, Çifçi G, Imren C, Cormier MH, McHugh CMG, Gürçay S, Poyraz D, Okay S, Atgin O, Diebold JB (2012) Evidence for widespread creep on the flanks of the sea of Marmara transform basin from marine geophysical data. Geology 40:439–442. doi:10.1130/G32652.1
Solheim A, Bryn P, Sejrup HP, Mienert J, Berg K (2005) Ormen Lange - An integrated study for the safe development of a deep-water gas field within the Storegga Slide Complex, NE Atlantic continental margin; executive summary. Mar Pet Geol 22:1–9. doi:10.1016/j.marpetgeo.2004.10.001
Stegmann S, Mörz T, Kopf A (2006a) Initial results of a new free fall-cone penetrometer (FF-CPT) for geotechnical in situ characterisation of soft marine sediments. Nor Geol Tidsskr 86:199–208
Stegmann S, Villinger H, Kopf A (2006b) Design of a modular, marine free-fall cone penetrometer. Sea Technol 47(02):27–33
Stegmann S, Strasser M, Anselmetti F, Kopf A (2007) Geotechnical in situ characterization of subaquatic slopes: the role of pore pressure transients versus frictional strength in landslide initiation. Geophys Res Lett. doi:10.1029/2006GL029122
Steiner A (2013) Stability of submarine slope sediments using dynamic and static piezocone penetrometers. Doctoral Thesis, Bremen University
Steiner A, L’Heureux J-S, Kopf A, Vanneste M, Longva O, Lange M, Haflidason H (2012) An in-situ free-fall piezocone penetrometer for characterizing soft and sensitive clays at Finneidfjord (northern Norway). In: Submarine Mass Movements and Their Consequences, vol 31. Springer, Heidelberg, pp 99–109. doi:10.1007/978-1-4020-6512-5
Strasser M, Anselmetti FS (2008) Mass-movement event stratigraphy in Lake Zurich; a record of varying seismic and environmental impacts. Beiträge Geol Schweiz 95:23–41
Strasser M, Anselmetti FS, Fäh D, Giardini D, Schnellmann M (2006) Magnitudes and source areas of large prehistoric northern Alpine earthquakes revealed by slope failures in lakes. Geology 34:1005. doi:10.1130/G22784A.1
Strasser M, Stegmann S, Bussmann F, Anselmetti FS, Rick B, Kopf A (2007) Quantifying subaqueous slope stability during seismic shaking: Lake Lucerne as model for ocean margins. Mar Geol 240:77–97. doi:10.1016/j.margeo.2007.02.016
Strasser M, Schindler C, Anselmetti FS (2008) Late Pleistocene earthquake-triggered moraine dam failure and outburst of Lake Zurich, Switzerland. J Geophys Res Earth Surf 113:1–16. doi:10.1029/2007JF000802
Strasser M, Hilbe M, Anselmetti FS (2011) Mapping basin-wide subaquatic slope failure susceptibility as a tool to assess regional seismic and tsunami hazards. Mar Geophys Res 32:331–347. doi:10.1007/s11001-010-9100-2
Strasser M, Monecke K, Schnellmann M, Anselmetti FS (2013) Lake sediments as natural seismographs: a compiled record of Late Quaternary earthquakes in Central Switzerland and its implication for Alpine deformation. Sedimentology 60:319–341. doi:10.1111/sed.12003
Strupler M, Hilbe M, Anselmetti FS, Strasser M (2015) Das neue Tiefenmodell des Zürichsees: Hochauflösende Darstellung der geomorphodynamischen Ereignisse im tiefen Seebecken. Swiss Bull Angew Geol 20:71–83
Sultan N, Savoye B, Jouet G, Leynaud D, Cochonat P, Henry P, Stegmann S, Kopf A (2010) Investigation of a possible submarine landslide at the Var delta front (Nice slope - SE France). Can Geotech J 47:486–496. doi:10.1139/T09-105
Tappin DR, Watts P, McMurtry GM, Lafoy Y, Matsumoto T (2001) The Sissano, Papua New Guinea tsunami of July 1998 - Offshore evidence on the source mechanism. Mar Geol 175:1–23. doi:10.1016/S0025-3227(01)00131-1
Tobutt DC (1981) Monte Carlo simulation methods for slope stability. Comput Geosci 8:199–208
Urgeles R, De Mol B, Puig P, De Batist M, Hughes-Clarke JE (2007) Sediment undulations on the Llobregat prodelta: signs of early slope instability or sedimentary bedforms? J Geophys Res 112:1–12. doi:10.1029/2005JB003929
Wolff T (1996) Probabilistic slope stability in theory and practice. In: Uncertainty in the geologic environment. ASCE, pp 419–433
Zandbergen PA (2011) Error propagation modeling for terrain analysis using dynamic simulation tools in ArcGIS Modelbuilder. In: Hengl T, Evans IS, Wilson JP, Gould M (eds) Geomorphometry 2011. Redlands, pp 57–60
Acknowledgements
This work was supported by the Swiss National Foundation Grant Nr. 133481. We thank Anna Reusch, Katrina Kremer, Stefano Fabbri, Robert Hofmann, Reto Seifert, Stewart Bishop, Christian Zoellner, Tobias Schwestermann and Utsav Mannu for their efforts during the data acquisition, Andrea Wolter for her inputs with SLIDE Software, and Beat Rick (GeoVonMoos AG) for the access to additional Lake Zurich data. Gratefully acknowledged are two anonymous reviewers and the editors for their constructive inputs.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there is no conflict of interest with third parties.
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
(PDF 271 kb)
Rights and permissions
About this article
Cite this article
Strupler, M., Hilbe, M., Anselmetti, F.S. et al. Probabilistic stability evaluation and seismic triggering scenarios of submerged slopes in Lake Zurich (Switzerland). Geo-Mar Lett 37, 241–258 (2017). https://doi.org/10.1007/s00367-017-0492-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00367-017-0492-8
Keywords
- Slope Stability
- Slope Gradient
- Lithological Unit
- Undrained Shear Strength
- Geotechnical Data