Advertisement

Geo-Marine Letters

, Volume 37, Issue 3, pp 241–258 | Cite as

Probabilistic stability evaluation and seismic triggering scenarios of submerged slopes in Lake Zurich (Switzerland)

  • M. Strupler
  • M. Hilbe
  • F. S. Anselmetti
  • A. J. Kopf
  • T. Fleischmann
  • M. Strasser
Original

Abstract

Subaqueous landslides and their consequences, such as tsunamis, can cause serious damage to offshore infrastructure and coastal communities. Stability analyses of submerged slopes are therefore crucial, yet complex steps for hazard assessment, as many geotechnical and morphological factors need to be considered. Typically, deterministic models with data from a few sampling locations are used for the evaluation of slope stabilities, as high efforts are required to ensure high spatial data coverage. This study presents a simple but flexible approach for the probabilistic stability assessment of subaqueous slopes that takes into account the spatial variability of geotechnical data. The study area (~2 km2) in Lake Zurich (northern Switzerland) shows three distinct subaquatic landslides with well-defined headscarps, translation areas (i.e. the zone where translational sliding occurred) and mass transport deposits. The ages of the landslides are known (~2,210 and ~640 cal. yr BP, and 1918 AD), and their triggers have been assigned to different mechanisms by previous studies. A combination of geophysical, geotechnical, and sedimentological methods served to analyse the subaquatic slope in great spatial detail: 3.5 kHz pinger seismic reflection data and a 300 kHz multibeam bathymetric dataset (1 m grid) were used for the detection of landslide features and for the layout of a coring and an in situ cone penetration testing campaign. The assignment of geotechnical data to lithological units enabled the construction of a sediment-mechanical stratigraphy that consists of four units, each with characteristic profiles of bulk density and shear strength. The thickness of each mechanical unit can be flexibly adapted to the local lithological unit thicknesses identified from sediment cores and seismic reflection profiles correlated to sediment cores. The sediment-mechanical stratigraphy was used as input for a Monte Carlo simulated limit-equilibrium model on an infinite slope for the assessment of the present slope stability and for a back analysis of past landslides in the study area, both for static and earthquake-triggered scenarios. The results show that the location of failure initiation in the model is consistent with stratigraphic analysis and failure-plane identification from sediment cores. Furthermore, today’s sediment-charged slopes are failure-prone, even for a static case. This approach of including an adaptable sediment-mechanical stratigraphy into a limit-equilibrium slope stability analysis may be applied as well to the marine realm.

Keywords

Slope Stability Slope Gradient Lithological Unit Undrained Shear Strength Geotechnical Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the Swiss National Foundation Grant Nr. 133481. We thank Anna Reusch, Katrina Kremer, Stefano Fabbri, Robert Hofmann, Reto Seifert, Stewart Bishop, Christian Zoellner, Tobias Schwestermann and Utsav Mannu for their efforts during the data acquisition, Andrea Wolter for her inputs with SLIDE Software, and Beat Rick (GeoVonMoos AG) for the access to additional Lake Zurich data. Gratefully acknowledged are two anonymous reviewers and the editors for their constructive inputs.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest with third parties.

Supplementary material

367_2017_492_MOESM1_ESM.pdf (271 kb)
ESM 1 (PDF 271 kb)

References

  1. Abramson LW, Lee TS, Sharma S, Boyce GM (2002) Slope stability and stabilization methods, 2nd edn. Wiley, New YorkGoogle Scholar
  2. Biscontin G, Pestana JM (2006) Factors affecting seismic response of submarine slopes. Nat Hazards Earth Syst Sci 6:97–107. doi: 10.5194/nhess-6-97-2006 CrossRefGoogle Scholar
  3. Bitterli T, George M, Matousek F, Christe R, Brändli R, Frey D (2004) Grundwasservorkommen. In: Hydrologischer Atlas der Schweiz, Tafel 8.6. Bundesamt für Umwelt, BernGoogle Scholar
  4. Blum P (1997) Physical properties handbook, ODP Tech Note 26. doi: 10.2973/odp.tn.26.1997
  5. Bornhold B, Prior DB (1990) Morphology and sedimentary processes on the subaqueous Noeick River delta, British Columbia, Canada. In: Colella A, Prior DB (eds) Coarse-grained deltas. Blackwell, Oxford, pp 169–181CrossRefGoogle Scholar
  6. Chandler DS (1996) Monte Carlo simulation to evaluate slope stability. In: Shakelford C, Nelson PP, Roth MJS (eds) Uncertainty in the geologic environment: from theory to practice. American Society of Civil Engineers, New York, pp 474–493Google Scholar
  7. Chapron E, Van Rensbergen P, De Batist M, Beck C, Henriet JP (2004) Fluid-escape features as a precursor of a large sublacustrine sediment slide in Lake Le Bourget, NW Alps, France. Terra Nov. 16:305–311. doi: 10.1111/j.1365-3121.2004.00566.x
  8. Coduto DP, Yeung MR, Kitch WA (2011) Geotechnical engineering: principles and practices, 2nd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  9. Craig RF (2004) Craig’s soil mechanics, 7th edn. Spon Press, New YorkGoogle Scholar
  10. Dan G, Sultan N, Savoye B (2007) The 1979 Nice harbour catastrophe revisited: trigger mechanism inferred from geotechnical measurements and numerical modelling. Mar Geol 245:40–64. doi: 10.1016/j.margeo.2007.06.011 CrossRefGoogle Scholar
  11. Flood RD, Shor AN, Manley PL (1993) Morphology of abyssal mudwaves at project MUDWAVES sites in the Argentine Basin. Deep-Sea Research Part II: Topical Studies in Oceanography 40(4–5): 40:859–888. doi: 10.1016/0967-0645(93)90038-O
  12. Giovanoli F (1979) Die remanente Magnetisierung von Seesedimenten. PhD Thesis Nr. 6350, ETH ZürichGoogle Scholar
  13. Gyger M, Müller-Vonmoos M, Schindler C (1976) Untersuchungen zur Klassifikation spät- und nacheiszeitlicher Sedimente aus dem Zürichsee. Schweiz Mineral Petrogr Mitt 56:387–406Google Scholar
  14. Heim A (1876) Bericht und Expertengutachten über die im Februar und September 1875 in Horgen am Zürichsee vorgekommenen Rutschungen. Die Eisenbahn 4:191–196Google Scholar
  15. Hein FJ, Longstaffe FJ (1985) Sedimentologic, mineralogic, and geotechnical descriptions of fine-grained slope and basin deposits, Baffin Island Fiords. Geo-Mar Lett 5:11–16. doi: 10.1007/BF02629791 CrossRefGoogle Scholar
  16. Huder J (1963) Bestimmung der Scherfestigkeit strukturempfindlicher Böden unter besonderer Berücksichtigung der Seekreide. Mitt Versuchsanstalt Wasserbau Erdbau Eidgenössischen Tech Hochschule Zürich 58:1–35Google Scholar
  17. Jiang L, Leblond PH (1992) The coupling of a submarine slide and the surface. J Geophys Res 97:12731–12744CrossRefGoogle Scholar
  18. Jibson RW (1993) Predicting earthquake-induced landslide displacements using Newmark’s sliding block analysis. Transp Res Rec 1411:9–17Google Scholar
  19. Jibson RW (2012) Models of the triggering of landslides during earthquakes. In: Clague JJ, Stead D (eds) Landslides: types, mechanisms and modeling. Cambridge University Press, Cambridge, pp 196–206. doi: 10.1017/CBO9780511740367.018 CrossRefGoogle Scholar
  20. Johari A, Javadi AA (2012) Reliability assessment of infinite slope stability using the jointly distributed random variables method. Sci Iran 19:423–429. doi: 10.1016/j.scient.2012.04.006 CrossRefGoogle Scholar
  21. Kelts K (1978) Geological and sedimentary evolution of Lakes Zurich and Zug, Switzerland. PhD Thesis Nr. 6146, ETH ZurichGoogle Scholar
  22. Kelts K, Hsü KJ (1980) Resedimented facies of 1875 Horgen slumps in Lake Zurich and a process model of longitudinal transport of turbidity currents. Eclogae Geol Helv 73:271–281Google Scholar
  23. Kelts K, Briegel U, Ghilardi K, Hsu K (1986) The limnogeology-ETH coring system. Swiss J Hydrol 48:104–115. doi: 10.1007/BF02544119 CrossRefGoogle Scholar
  24. Klaucke I, Cochonat P (1999) Analysis of past seafloor failures on the continental slope off Nice (SE France). Geo-Mar Lett 19:245–253CrossRefGoogle Scholar
  25. Kohv M, Talviste P, Hang T, Kalm V, Rosentau A (2009) Slope stability and landslides in proglacial varved clays of western Estonia. Geomorphology 106:315–323. doi: 10.1016/j.geomorph.2008.11.013 CrossRefGoogle Scholar
  26. Kramer SL (1996) Geotechnical earthquake engineering. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  27. Laberg J, Vorren TO, Mienert J, Haflidason H, Bryn P, Lien R (2003) Preconditions leading to the Holocene Trænadjupet Slide. In: Submarine mass movements and their consequences, vol 19. Springer, Heidelberg, pp 247–254Google Scholar
  28. Lacasse S, Nadim F (1996) Uncertainties in characterising soil properties. In: Shackelford CD, Nelson PP, Roth MJS (eds) Uncertainty in the geologic environment: from theory to practice. American Society of Civil Engineers, New York, pp 49–75Google Scholar
  29. Leroueil S, Vaunat J, Picarelli L, Locat J, Lee H, Faure R (1996) Geotechnical characterisation of slope movements. In: Senneset K (ed) Landslides, 1st edn. Balkema, Rotterdam, pp 53–74Google Scholar
  30. Leynaud D, Sultan N (2010) 3-D slope stability analysis: a probability approach applied to the Nice slope (SE France). Mar Geol 269:89–106. doi: 10.1016/j.margeo.2009.12.002 CrossRefGoogle Scholar
  31. Leynaud D, Mienert J, Nadim F (2004) Slope stability assessment of the Helland Hansen area offshore the mid-Norwegian margin. Mar Geol 213:457–480. doi: 10.1016/j.margeo.2004.10.019 CrossRefGoogle Scholar
  32. Lister GS, Giovanoli F, Eberli G, Finckh P, Finger W, He Q, Heim C, Hsü KJ, Kelts K, Peng C, Sidler C, Zhao X (1984) Late Quaternary sediments in Lake Zurich, Switzerland. Environ Geol 5:191–205CrossRefGoogle Scholar
  33. Locat J, Lee HJ (2002) Submarine landslides: advances and challenges. Can Geotech J 39:193–212. doi: 10.1139/t01-089 CrossRefGoogle Scholar
  34. Lunne T, Robertson PK, Powell JJM (2002) Cone penetration testing in geotechnical practice, 2nd edn. Spon Press, LondonGoogle Scholar
  35. Masson DG, Harbitz CB, Wynn RB, Pedersen G, Løvholt F (2006) Submarine landslides: processes, triggers and hazard prediction. Philos Trans A Math Phys Eng Sci 364:2009–2039. doi: 10.1098/rsta.2006.1810 CrossRefGoogle Scholar
  36. Morgenstern NR, Price VE (1967) A numerical method for solving the equations of stability of general slip surfaces. Comput J 9:388–393CrossRefGoogle Scholar
  37. Mosher DC, Thomson RE (2002) The Foreslope Hills: large-scale, fine-grained sediment waves in the Strait of Georgia, British Columbia. Mar Geol 192:275–295. doi: 10.1016/S0025-3227(02)00559-5 CrossRefGoogle Scholar
  38. Nadim F, Einstein H, Roberds W (2005) Probabilistic stability analysis for individual slopes in soil and rock. In: Hungr O, Fell R, Couture R, Eberhard E (eds) Landslide risk management. Taylor & Francis, Boca Raton, p 764Google Scholar
  39. Newmark NM (1965) Effects of earthquakes on dams and embarkments. Geotechnique 2:139–160CrossRefGoogle Scholar
  40. Nipkow F (1927) Über das Verhalten der Skelette planktischer Kieselalagen im geschichteten Tiefenschlamm des Zürich- und Baldeggersees. PhD Thesis Nr. 455, ETH ZurichGoogle Scholar
  41. Parsons JD, Bush JWM, Syvitski JPM (2001) Hyperpycnal plume formation from riverine outflows with small sediment concentrations. Sedimentology 48:465–478. doi: 10.1046/j.1365-3091.2001.00384.x CrossRefGoogle Scholar
  42. Prior DB, Coleman JM, Bornhold BD (1982) Results of a known seafloor instability event. Geo-Mar Lett 2:117–122. doi: 10.1007/BF02462751 CrossRefGoogle Scholar
  43. Puzrin AM, Germanovich LN (2005) The growth of shear bands in the catastrophic failure of soils. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 461:1199–1228. doi: 10.1098/rspa.2001.1378
  44. Schindler C (1974) Zur Geologie des Zürichsees. Eclogae Geol Helv 67:163–196Google Scholar
  45. Schindler C (1976) Eine geologische Karte des Zürichsees und ihre Deutung. Eclogae Geol Helv 69:125–138Google Scholar
  46. Schindler CM (1996) Aussergewöhnliche Rutschungen, Felsstürze und Murgänge. In: Instabile Hänge und andere risikorelevante natürliche Prozesse. Birkhäuser, Basel, pp 73–84Google Scholar
  47. Schindler C, Gyger M (1989) The landslides of Zug seen 100 years after the analysis of Albert Heim. In: Bonnard C (ed) Rutschungsphänomene im Gebiet des Alpenbogens. Balkema, Rotterdam, pp 123–126Google Scholar
  48. Schlüchter C (1984) Geotechnical properties of Zübo sediments. In: Hsü KJ, Kelts K (eds) Quaternary geology of Lake Zurich: an interdisciplinary investigation by deep-lake drilling. Schweizerbart, Stuttgart, pp 135–140Google Scholar
  49. Schnellmann M, Anselmetti FS, Giardini D, McKenzie JA, Ward SN (2002) Prehistoric earthquake history revealed by lacustrine slump deposits. Geology 30:1131–1134. doi: 10.1130/0091-7613(2002)030<1131:PEHRBL>2.0.CO;2 CrossRefGoogle Scholar
  50. Schnellmann M, Anselmetti FS, Giardini D, McKenzie JA (2005) Mass movement-induced fold-and-thrust belt structures in unconsolidated sediments in Lake Lucerne (Switzerland). Sedimentology 52:271–289. doi: 10.1111/j.1365-3091.2004.00694.x CrossRefGoogle Scholar
  51. Schnellmann M, Anselmetti FS, Giardini D, McKenzie JA (2006) 15,000 years of mass-movement history in Lake Lucerne: implications for seismic and tsunami hazards. Eclogae Geol Helv 99:409–428. doi: 10.1007/s00015-006-1196-7 CrossRefGoogle Scholar
  52. Schwarz-Zanetti G, Fäh D (2011) Grundlagen des Makroseismischen Erdbebenkatalogs der Schweiz Band 1:1000–1680. vdf Hochschulverlag AG, ZürichGoogle Scholar
  53. Shillington DJ, Seeber L, Sorlien CC, Steckler MS, Kurt H, Dondurur D, Çifçi G, Imren C, Cormier MH, McHugh CMG, Gürçay S, Poyraz D, Okay S, Atgin O, Diebold JB (2012) Evidence for widespread creep on the flanks of the sea of Marmara transform basin from marine geophysical data. Geology 40:439–442. doi: 10.1130/G32652.1 CrossRefGoogle Scholar
  54. Solheim A, Bryn P, Sejrup HP, Mienert J, Berg K (2005) Ormen Lange - An integrated study for the safe development of a deep-water gas field within the Storegga Slide Complex, NE Atlantic continental margin; executive summary. Mar Pet Geol 22:1–9. doi: 10.1016/j.marpetgeo.2004.10.001 CrossRefGoogle Scholar
  55. Stegmann S, Mörz T, Kopf A (2006a) Initial results of a new free fall-cone penetrometer (FF-CPT) for geotechnical in situ characterisation of soft marine sediments. Nor Geol Tidsskr 86:199–208Google Scholar
  56. Stegmann S, Villinger H, Kopf A (2006b) Design of a modular, marine free-fall cone penetrometer. Sea Technol 47(02):27–33Google Scholar
  57. Stegmann S, Strasser M, Anselmetti F, Kopf A (2007) Geotechnical in situ characterization of subaquatic slopes: the role of pore pressure transients versus frictional strength in landslide initiation. Geophys Res Lett. doi: 10.1029/2006GL029122 Google Scholar
  58. Steiner A (2013) Stability of submarine slope sediments using dynamic and static piezocone penetrometers. Doctoral Thesis, Bremen UniversityGoogle Scholar
  59. Steiner A, L’Heureux J-S, Kopf A, Vanneste M, Longva O, Lange M, Haflidason H (2012) An in-situ free-fall piezocone penetrometer for characterizing soft and sensitive clays at Finneidfjord (northern Norway). In: Submarine Mass Movements and Their Consequences, vol 31. Springer, Heidelberg, pp 99–109. doi: 10.1007/978-1-4020-6512-5
  60. Strasser M, Anselmetti FS (2008) Mass-movement event stratigraphy in Lake Zurich; a record of varying seismic and environmental impacts. Beiträge Geol Schweiz 95:23–41Google Scholar
  61. Strasser M, Anselmetti FS, Fäh D, Giardini D, Schnellmann M (2006) Magnitudes and source areas of large prehistoric northern Alpine earthquakes revealed by slope failures in lakes. Geology 34:1005. doi: 10.1130/G22784A.1 CrossRefGoogle Scholar
  62. Strasser M, Stegmann S, Bussmann F, Anselmetti FS, Rick B, Kopf A (2007) Quantifying subaqueous slope stability during seismic shaking: Lake Lucerne as model for ocean margins. Mar Geol 240:77–97. doi: 10.1016/j.margeo.2007.02.016 CrossRefGoogle Scholar
  63. Strasser M, Schindler C, Anselmetti FS (2008) Late Pleistocene earthquake-triggered moraine dam failure and outburst of Lake Zurich, Switzerland. J Geophys Res Earth Surf 113:1–16. doi: 10.1029/2007JF000802 CrossRefGoogle Scholar
  64. Strasser M, Hilbe M, Anselmetti FS (2011) Mapping basin-wide subaquatic slope failure susceptibility as a tool to assess regional seismic and tsunami hazards. Mar Geophys Res 32:331–347. doi: 10.1007/s11001-010-9100-2 CrossRefGoogle Scholar
  65. Strasser M, Monecke K, Schnellmann M, Anselmetti FS (2013) Lake sediments as natural seismographs: a compiled record of Late Quaternary earthquakes in Central Switzerland and its implication for Alpine deformation. Sedimentology 60:319–341. doi: 10.1111/sed.12003 CrossRefGoogle Scholar
  66. Strupler M, Hilbe M, Anselmetti FS, Strasser M (2015) Das neue Tiefenmodell des Zürichsees: Hochauflösende Darstellung der geomorphodynamischen Ereignisse im tiefen Seebecken. Swiss Bull Angew Geol 20:71–83Google Scholar
  67. Sultan N, Savoye B, Jouet G, Leynaud D, Cochonat P, Henry P, Stegmann S, Kopf A (2010) Investigation of a possible submarine landslide at the Var delta front (Nice slope - SE France). Can Geotech J 47:486–496. doi: 10.1139/T09-105 CrossRefGoogle Scholar
  68. Tappin DR, Watts P, McMurtry GM, Lafoy Y, Matsumoto T (2001) The Sissano, Papua New Guinea tsunami of July 1998 - Offshore evidence on the source mechanism. Mar Geol 175:1–23. doi: 10.1016/S0025-3227(01)00131-1 CrossRefGoogle Scholar
  69. Tobutt DC (1981) Monte Carlo simulation methods for slope stability. Comput Geosci 8:199–208CrossRefGoogle Scholar
  70. Urgeles R, De Mol B, Puig P, De Batist M, Hughes-Clarke JE (2007) Sediment undulations on the Llobregat prodelta: signs of early slope instability or sedimentary bedforms? J Geophys Res 112:1–12. doi: 10.1029/2005JB003929 CrossRefGoogle Scholar
  71. Wolff T (1996) Probabilistic slope stability in theory and practice. In: Uncertainty in the geologic environment. ASCE, pp 419–433Google Scholar
  72. Zandbergen PA (2011) Error propagation modeling for terrain analysis using dynamic simulation tools in ArcGIS Modelbuilder. In: Hengl T, Evans IS, Wilson JP, Gould M (eds) Geomorphometry 2011. Redlands, pp 57–60Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Geological InstituteETH ZurichZurichSwitzerland
  2. 2.Institute of Geological Sciences and Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
  3. 3.MARUM – Center for Marine Environmental SciencesBremenGermany
  4. 4.Institute of GeologyUniversity of InnsbruckInnsbruckAustria

Personalised recommendations