Skip to main content
Log in

Integration of TerraSAR-X, RapidEye and airborne lidar for remote sensing of intertidal bedforms on the upper flats of Norderney (German Wadden Sea)

  • Technical Paper
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

The Wadden Sea is a large coastal transition area adjoining the southern North Sea uniting ecological key functions with an important role in coastal protection. The region is strictly protected by EU directives and national law and is a UNESCO World Heritage Site, requiring frequent quality assessments and regular monitoring. In 2014 an intertidal bedform area characterised by alternating crests and water-covered troughs on the tidal flats of the island of Norderney (German Wadden Sea sector) was chosen to test different remote sensing methods for habitat mapping: airborne lidar, satellite-based radar (TerraSAR-X) and electro-optical sensors (RapidEye). The results revealed that, although sensitive to different surface qualities, all sensors were able to image the bedforms. A digital terrain model generated from the lidar data shows crests and slopes of the bedforms with high geometric accuracy in the centimetre range, but high costs limit the operation area. TerraSAR-X data enabled identifying the positions of the bedforms reflecting the residual water in the troughs also with a high resolution of up to 1.1 m, but with larger footprints and much higher temporal availability. RapidEye data are sensitive to differences in sediment moisture employed to identify crest areas, slopes and troughs, with high spatial coverage but the lowest resolution (6.5 m). Monitoring concepts may differ in their remote sensing requirements regarding areal coverage, spatial and temporal resolution, sensitivity and geometric accuracy. Also financial budgets limit the selection of sensors. Thus, combining differing assets into an integrated concept of remote sensing contributes to solving these issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adolph W, Schückel U, Son CS, Jung R, Bartholomä A, Ehlers M, Kröncke I, Lehner S, Farke H (2016) Monitoring spatiotemporal trends in intertidal bedforms of the German Wadden Sea in 2009–2015 with TerraSAR-X, including links with sediments and benthic macrofauna. Geo-Mar Lett 37 (in press). doi:10.1007/s00367-016-0478-y

  • Airbus Defence & Space (2014) Radiometric calibration of TerraSAR-X Data. Beta Naught and Sigma Naught coefficient calculation. Airbus Defence & Space, TSXX-ITD-TN-0049-radiometric_calculations_I3.00.doc

  • Aubert M, Baghdadi N, Zribi M, Douaoui A, Loumagne C, Baup F, El Haji M, Garrigues S (2011) Analysis of TerraSAR-X data sensitivity to bare soil moisture, roughness, composition and soil crust. Remote Sens Environ 115(8):1801–1810. doi:10.1016/j.rse.2011.02.021

    Article  Google Scholar 

  • BlackBridge (2013) Satellite imagery product specifications. BlackBridge. Accessed 25 November 2013. <http://blackbridge.com/rapideye/upload/RE_Product_Specifications_ENG.pdf>

  • BlackBridge (2015) http://www.blackbridge.com/rapideye/upload/RE_Product_Specifications_ENG.pdf

  • Choe B-H, Kim D-J, Hwang J-H, Oh Y, Moon WM (2012) Detection of oyster habitat in tidal flats using multi-frequency polarimetric SAR data. Estuar Coast Shelf Sci 97:28–37. doi:10.1016/j.ecss.2011.11.007

    Article  Google Scholar 

  • Decho AW, Kawaguchi T, Allison MA, Louchard EM, Reid RP, Stephens FC, Voss KJ, Wheatcroft RA, Tyloe BB (2003) Sediment properties influencing upwelling spectral reflectance signatures: the “biofilm gel effect”. Limnol Oceanogr 48(1):431–443. doi:10.4319/lo.2003.48.1_part_2.0431

    Article  Google Scholar 

  • Dehouck A, Lafon V, Baghdadi N, Marieu V (2012) Use of optical and radar data in synergy for mapping intertidal flats and coastal salt-marshes (Arcachon lagoon, France). In: IGARSS 2012 I.E. Int Geoscience and Remote Sensing Symp, Munich, Germany, pp 2853–2856. doi:10.1109/IGARSS.2012.6350837

  • European Commission (1992) Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off J Eur Communities, L 206, 22.07.1992, pp 1–66

  • European Commission (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off J Eur Communities, L 327, 22.12.2000, pp 1–72

  • European Commission (2008) Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). Off J Eur Communities, L 164, 25.6.2008, pp 19–40

  • Gade M, Alpers W, Melsheimer C, Tanck G (2008) Classification of sediments on exposed tidal flats in the German Bight using multi-frequency radar data. Remote Sens Environ 112(4):1603–1613. doi:10.1109/IGARSS.2012.6350837

    Article  Google Scholar 

  • Gade M, Melchionna S, Stelzer K, Kohlus J (2014) Multi-frequency SAR data help improving the monitoring of intertidal flats on the German North Sea coast. Estuar Coast Shelf Sci 140:32–42. doi:10.1109/IGARSS.2012.6350837

    Article  Google Scholar 

  • Gade M, Melchionna S, Kemme L (2015) Analyses of multi-year synthetic aperture radar imagery of dry-fallen intertidal flats. Int Arch Photogramm Remote Sens Spat Inf Sci XL-7(W3):941–947. doi:10.5194/isprsarchives-XL-7-W3-941-2015

    Article  Google Scholar 

  • Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621. doi:10.1109/TSMC.1973.4309314

    Article  Google Scholar 

  • Heygster G, Dannenberg J, Notholt J (2010) Topographic mapping of the German tidal flats analyzing SAR images with the waterline method. IEEE Trans Geosci Remote Sens 48(3):1019–1030. doi:10.1109/TGRS.2009.2031843

    Article  Google Scholar 

  • Ibrahim E, Adam S, van der Wal D, De Wever A, Sabbe K, Forster R, Monbaliu J (2009) Assessment of unsupervised classification techniques for intertidal sediments. eProc EARSeL 8:158–179, 10.1.1.535.1691

    Google Scholar 

  • Jung R, Ehlers M (2016) Comparison of two feature selection methods for the separability analysis of intertidal sediments with spectrometric datasets in the German Wadden Sea. Int J Appl Earth Obs Geoinf 52:175–191. doi:10.1016/j.jag.2016.06.009

    Article  Google Scholar 

  • Jung R, Adolph W, Ehlers M, Farke H (2015) A multi-sensor approach for detecting the different land covers of tidal flats in the German Wadden Sea – a case study at Norderney. Remote Sens Environ 170:188–202. doi:10.1016/j.rse.2015.09.018

    Article  Google Scholar 

  • Kim D-J, Choe B-H, Moon WM (2013) Remote sensing of oyster reefs and groundwater discharge in coastal area using synthetic aperture radar. In: IEEE/GRSS (ed) Proc IEEE Int Geoscience and Remote Sensing Symp (IGARSS), 21–26 July 2013, Melbourne, Australia. Institute of Electrical and Electronics Engineers, Piscataway, NJ, pp 2435–2438. doi:10.1109/IGARSS.2013.6723312

    Chapter  Google Scholar 

  • Lee Y-K, Park J-W, Choi J-K, Oh Y, Won J-S (2012) Potential uses of TerraSAR-X for mapping herbaceous halophytes over salt marsh and tidal flats. Estuar Coast Shelf Sci 115:366–376. doi:10.1016/j.ecss.2012.10.003

    Article  Google Scholar 

  • Li Z, Heygster G, Notholt J (2014) Intertidal topographic maps and morphological changes in the German Wadden Sea between 1996–1999 and 2006–2009 from the waterline method and SAR images. IEEE J Sel Top Appl Earth Obs Remote Sens 7(8):3210–3224. doi:10.1109/JSTARS.2014.2313062

    Article  Google Scholar 

  • Manakos IK, Manevski C, Kalaitzidis S, Edler D (2011) Comparison between FLAASH and ATCOR atmospheric correction modules on the basis of WorldView-2 Imagery and in situ spectroradiometric measurements. In: EARSeL 7th SIG-Imaging Spectroscopy Workshop, Edinburgh

  • Mason DC, Scott TR, Dance SL (2010) Remote sensing of intertidal morphological change in Morecambe Bay, U.K., between 1991 and 2007. Estuar Coast Shelf Sci 87(3):487–496. doi:10.1016/j.ecss.2010.01.015

    Article  Google Scholar 

  • Matthew MW, Adler-Golden SM, Berk A, Felde G, Anderson GP, Gorodetsky D, Paswaters S, Shippert M (2002) Atmospheric correction of spectral imagery: evaluation of the FLAASH algorithm with AVIRIS data. In: Proc 31st Applied Imagery Pattern Recognition Workshop From Color to Hyperspectral: Advancements in Spectral Imagery Exploitation, Washington, pp 157–163. doi:10.1109/AIPR.2002.1182270

  • Moreira A, Prats-Iraola P, Younis M, Krieger G, Hajnsek I, Papathanassiou KP (2013) A tutorial on synthetic aperture radar. IEEE Geosci Remote Sens Mag 1(1):6–43. doi:10.1109/MGRS.2013.2248301

    Article  Google Scholar 

  • Müller G, Stelzer K, Smollich S, Gade M, Adolph W, Melchionna S, Kemme L, Geißler J, Millat G, Reimers H-C, Kohlus K, Eskildsen K (2016) Remotely sensing the German Wadden Sea—a new approach to address national and international environmental legislation. Environ Monit Assess 188(10):595. doi:10.1007/s10661-016-5591-x

    Article  Google Scholar 

  • Niedermeier A, Hoja D, Lehner S (2005) Topography and morphodynamics in the German Bight using SAR and optical remote sensing data. Ocean Dyn 55(2):100–109. doi:10.1007/s10236-005-0114-2

    Article  Google Scholar 

  • Nieuwhof S, Herman P, Dankers N, Troost K, van der Wal D (2015) Remote sensing of epibenthic shellfish using synthetic aperture radar satellite imagery. Remote Sens 7(4):3710–3734. doi:10.3390/rs70403710

    Article  Google Scholar 

  • Rainey MP, Tyler AN, Bryant RG, Gilvear DJ, McDonald P (2000) The influence of surface and interstitial moisture on the spectral characteristics of intertidal sediments: implications for airborne image acquisition and processing. Int J Remote Sens 21(16):3025–3038. doi:10.1080/01431160050144938

    Article  Google Scholar 

  • Ryu J-H, Eom JA, Choi J-K (2010) Application of airborne remote sensing to the surface sediment classification in a tidal flat. In: 2010 I.E. Int Geoscience and Remote Sensing Symp (IGARSS), pp 942–945. doi:10.1109/IGARSS.2010.5653413

  • Schmidt A, Rottensteiner F, Soergel U (2013) Water-land-classification in coastal areas with full waveform lidar data. PFG 2:71–81

    Google Scholar 

  • SCOP-WWW (2001) Institute of Photogrammetry and Remote Sensing, Vienna University of Technology. http://www.ipf.tuwien.ac.at/produktinfo/scop/scopdtmsheet.htm

  • Small C, Steckler M, Seeber L, Akhter SH, Goodbred S, Mia B, Imam B (2009) Spectroscopy of sediments in the Ganges-Brahmaputra delta: spectral effects of moisture, grain size and lithology. Remote Sens Environ 113:342–361. doi:10.1016/j.rse.2008.10.009

    Article  Google Scholar 

  • Sørensen TH, Bartholdy K, Christiansen C, Pedersen JBT (2006) Intertidal surface type mapping in the Danish Wadden Sea. Mar Geol 235:87–99. doi:10.1016/j.margeo.2006.10.007

    Article  Google Scholar 

  • Stelzer K, Geißler J, Gade M, Eskildsen K, Kohlus J, Farke H, Reimers HC (2010) DeMarine Umwelt: Operationalisierung mariner GMES-Dienste in Deutschland. Integration optischer und SAR Erdbeobachtungsdaten für das Wattenmeermonitoring. Jahresbericht 2009–2010, pp 37–55

  • Van der Wal D, Herman PMJ (2007) Regression-based synergy of optical, shortwave infrared and microwave remote sensing for monitoring the grain-size of intertidal sediments. Remote Sens Environ 111(1):89–106. doi:10.1016/j.rse.2007.03.019

    Article  Google Scholar 

  • Van der Wal D, Herman PMJ, Wielemaker-van den Dool A (2005) Characterisation of surface roughness and sediment texture of intertidal flats using ERS SAR imagery. Remote Sens Environ 98(1):96–109. doi:10.1016/j.rse.2005.06.004

    Article  Google Scholar 

  • Wiehle S, Lehner S (2015) Automated waterline detection in the Wadden Sea using high-resolution TerraSAR-X images. J Sens 2015:450857. doi:10.1155/2015/450857

    Article  Google Scholar 

  • Winter C, Herrling G, Bartholomä A, Capperucci R, Callies U, Heipke C, Schmidt A, Hillebrand H, Reimers C, Bremer P, Weiler R (2014) Scientific concepts for monitoring the ecological state of German coastal seas (in German). Wasser und Abfall 07-08/2014:21–26. doi:10.1365/s35152-014-0685-7

Download references

Acknowledgements

This study forms part of the interdisciplinary research project “Wissenschaftliche Monitoringkonzepte für die Deutsche Bucht – WIMO” (“Scientific Monitoring Concepts for the German Bight”), jointly funded by the Ministry for Environment, Energy and Climate Protection and the Ministry for Science and Culture of the Federal State of Lower Saxony. The authors thank the German Aerospace Centre (DLR) for delivering an extensive set of TerraSAR-X images relating to Proposal ID COA1075 and the Lower Saxony State Department for Waterway, Coastal and Nature Conservation (NLWKN) for providing lidar data. Also acknowledged are constructive assessments by V.B. Ernstsen and an anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winny Adolph.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest with third parties.

Additional information

Responsible guest editor: C. Winter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adolph, W., Jung, R., Schmidt, A. et al. Integration of TerraSAR-X, RapidEye and airborne lidar for remote sensing of intertidal bedforms on the upper flats of Norderney (German Wadden Sea). Geo-Mar Lett 37, 193–205 (2017). https://doi.org/10.1007/s00367-016-0485-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-016-0485-z

Keywords