Spatiotemporal variability of sedimentology and morphology in the East Frisian barrier island system

Abstract

The highly dynamic East Frisian barrier island system (southern North Sea) is characterized by a complex morphology of tidal inlets, ebb-tidal deltas and foreshore beaches that reacts to storms and fair-weather conditions with characteristic patterns of sediment grain-size distributions. The morphological and sedimentological response to varying hydrodynamic conditions yet occurs in short time spans that are not covered by common monitoring strategies with measuring intervals typically of years. This study applies process-based numerical modelling with multiple sediment fractions to interpolate morphological states in time between bathymetrical surveys conducted in the summer months of 2004 and 2006. Morphodynamic simulations driven by real-time boundary conditions of tides, wind and waves are carried out for a representative period of 2 years. The spatiotemporal variability of the nearshore sedimentology and morphology is assessed by graded ranges of bed dynamics (i.e. bed elevation range) and the definition of sediment grain-size variability (i.e. mean diameter range). The effect of storm events and timescales of the sedimentological adaptation after storms to typical fair-weather conditions are exemplified at an ebb-tidal delta lobe where the morphological and sedimentological variability is found to be largest in the study area. The proposed method may serve to identify areas of high sedimentological and morphological activity for system understanding or in the framework of coastal monitoring strategies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Antia E, Flemming B, Wefer G (1994) Transgressive facies sequence of a high energy, wave-tide-storm-influenced shoreface: a case study of the east Frisian Barrier Islands (Southern North Sea). Facies 30(1):15–23

    Article  Google Scholar 

  2. Bartholomä A (2006) Acoustic bottom detection and seabed classification in the German Bight, southern North Sea. Geo-Mar Lett 26(3):177–184

    Article  Google Scholar 

  3. Bartholomä A, Kubicki A, Badewien TH, Flemming BW (2009) Suspended sediment transport in the German Wadden Sea—seasonal variations and extreme events. Ocean Dyn 59(2):213–225. doi:10.1007/s10236-009-0193-6

    Article  Google Scholar 

  4. Bartholomä A, Holler P, Schrottke K, Kubicki A (2011) Acoustic habitat mapping in the German Wadden Sea - Comparison of hydro-acoustic devices. J Coast Res SI 64:1–5

    Google Scholar 

  5. Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions. 1. Model description and validation. J Geophys Res 104:7649–7666. doi:10.1029/98JC02622

    Article  Google Scholar 

  6. Brown CJ, Smith SJ, Lawton P, Anderson JT (2011) Benthic habitat mapping: a review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. Estuar Coast Shelf Sci 92(3):502–520

    Article  Google Scholar 

  7. Chu K, Winter C, Hebbeln D, Schulz M (2013) Improvement of morphodynamic modeling of tidal channel migration by nudging. Coast Eng 77:1–13. doi:10.1016/jcoastaleng201302004

    Article  Google Scholar 

  8. Daly CJ, Bryan KR, Gonzalez MR, Klein AHF, Winter C (2014) Effect of selection and sequencing of representative wave conditions on process-based predictions of equilibrium embayed beach morphology. Ocean Dyn 64(6):863–877

    Article  Google Scholar 

  9. Deltares (2014) Delft3D-FLOW, User Manual, Simulation of multi-dimensional hydrodynamic flows and transport phenomena, including sediments. Delft, The Netherlands

  10. De Swart HE, Zimmerman JTF (2009) Morphodynamics of tidal inlet systems. Annu Rev Fluid Mech 41(1):203–229. doi:10.1146/annurevfluid010908165159

    Article  Google Scholar 

  11. Dissanayake DMPK, Roelvink JA, van der Wegen M (2009) Modelled channel patterns in a schematized tidal inlet. Coast Eng 56(11-12):1069–1083. doi:10.1016/jcoastaleng200908008

    Article  Google Scholar 

  12. Elias EPL, Cleveringa J, Buijsman MC, Roelvink JA, Stive MJF (2006) Field and model data analysis of sand transport patterns in Texel Tidal inlet (the Netherlands). Coast Eng 53(5-6):505–529. doi:10.1016/jcoastaleng200511006

    Article  Google Scholar 

  13. Figge K (1981) Karte der Sedimentverteilung in der Deutschen Bucht, Nordsee. Karte Nr 2900, Hamburg

  14. Flemming BW, Nyandwi N (1994) Land reclamation as a cause of fine-grained sediment depletion in backbarrier tidal flats (Southern North Sea). Netherlands J Aquat Ecol 28:299–307

    Article  Google Scholar 

  15. Hanisch J (1981) Sand transport in the tidal inlet between Wangerooge and Spiekeroog (W Germany). Holocene Mar Sediment North Sea Basin Spec Publ 5 IAS 35:175–185

  16. Hayes MO (1975) Morphology of sand accumulation in estuaries: an introduction to the symposium. In: Cronin LE (ed) Estuarine Research, vol 2. Academic Press, New York, pp 3–22

    Google Scholar 

  17. Hayes MO (1979) Barrier island morphology as a function of tidal and wave regime. In: Leatherman S (ed) Barrier islands, from the Gulf of St Lawrence to the Gulf of Mexico. Academic Press, New York, pp 1–27

    Google Scholar 

  18. Herrling G, Winter C (2014) Morphological and sedimentological response of a mixed-energy barrier island tidal inlet to storm and fair-weather conditions. Earth Surf Dyn 2(1):363–382. doi:10.5194/esurf-2-363-2014

    Article  Google Scholar 

  19. Herrling G, Winter C (2015) Tidally- and wind-driven residual circulation at the multiple-inlet system East Frisian Wadden Sea. Cont Shelf Res 106:45–59. doi:10.1016/jcsr201506001

    Article  Google Scholar 

  20. Kösters F, Winter C (2014) Exploring German Bight coastal morphodynamics based on modelled bed shear stress. Geo-Mar Lett 34(1):21–36. doi:10.1007/s00367-013-0346-y

    Article  Google Scholar 

  21. Kwoll E, Winter C (2011) Determination of the initial grain size distribution in a tidal inlet by means of numerical modelling. J Coast Res SI 64:1081–1085

    Google Scholar 

  22. Lesser GR, Roelvink JA, van Kester JATM, Stelling GS (2004) Development and validation of a three-dimensional morphological model. Coast Eng 51(8-9):883–915. doi:10.1016/jcoastaleng200407014

    Article  Google Scholar 

  23. Markert E, Kröncke I, Kubicki A (2015) Small scale morphodynamics of shoreface-connected ridges and their impact on benthic macrofauna. J Sea Res 99:47–55. doi:10.1016/jseares201502001

    Article  Google Scholar 

  24. Milbradt P, Valerius J, Zeiler M (2015) The functional seafloor model: preparation of a consistent database for morphology and sedimentology (in German). Die Küste 83:19–38

    Google Scholar 

  25. Murphy AH, Epstein ES (1989) Skill scores and correlation coefficients in model verification. Mon Weather Rev 117(3):572–582

    Article  Google Scholar 

  26. Nehmer P, Kröncke I (2003) Macrofaunal communities in the Wichter Ee, a channel system in the East Frisian Wadden Sea. Senckenberg marit 32(1-2):1–10

    Article  Google Scholar 

  27. Reiss H, Kröncke I (2001) Spatial and temporal distribution of macrofauna in the Otzumer Balje (East Frisian Wadden Sea, Germany). Senckenberg marit 31(2):283–298. doi:10.1007/BF03043037

    Article  Google Scholar 

  28. Ris RC, Holthuijsen LH, Booij N (1999) A third-generation wave model for coastal regions. 2. Verification. J Geophys Res 104:7667–7681. doi:10.1029/1998JC900123

    Article  Google Scholar 

  29. Roelvink JA (2006) Coastal morphodynamic evolution techniques. Coast Eng 53(2-3):277–287. doi:10.1016/jcoastaleng200510015

    Article  Google Scholar 

  30. Son CS, Flemming BW, Bartholomä A (2010) Evidence for sediment recirculation on an ebb-tidal delta of the East Frisian barrier-island system, southern North Sea. Geo-Mar Lett 31(2):87–100. doi:10.1007/s00367-010-0217-8

    Article  Google Scholar 

  31. Sutherland J, Walstra DJR, Chesher TJ, van Rijn LC, Southgate HN (2004a) Evaluation of coastal area modelling systems at an estuary mouth. Coast Eng 51(2):119–142

    Article  Google Scholar 

  32. Sutherland J, Peet AH, Soulsby RL (2004b) Evaluating the performance of morphological models. Coast Eng 51(8-9):917–939

    Article  Google Scholar 

  33. Valerius J, Kösters F, Zeiler M (2015) Identification of sediment distribution patterns as basis for the large-scale analysis of sediment dynamic processes on the shelf of the German Bight (in German). Die Küste 83:39–63

    Google Scholar 

  34. van der Wegen M, Roelvink JA (2012) Reproduction of estuarine bathymetry by means of a process-based model: Western Scheldt case study, the Netherlands. Geomorphology 179:152–167. doi:10.1016/jgeomorph201208007

    Article  Google Scholar 

  35. van der Wegen M, Dastgheib A, Jaffe BE, Roelvink JA (2011) Bed composition generation for morphodynamic modeling: case study of San Pablo Bay in California, USA. Ocean Dyn 61(2-3):173–186. doi:10.1007/s10236-010-0314-2

    Article  Google Scholar 

  36. Van Dijk T, Kleuskens MHP, Dorst LL, Van der Tak C, Doornenbal PJ, Van der Spek AJF, Hoogendoorn RM, Rodriguez Aguilera D, Menninga PJ, Noorlandt RP (2012) Quantified and applied sea-bed dynamics of the Netherlands continental shelf and the Wadden Sea. In: Jubilee conf proc NCK-days 2012: Crossing Borders in Coastal Research, Enschede, 13–16 March 2012, University of Twente, The Netherlands, pp 223–227

  37. Van Rijn LC, Grasmeijer BT, Ruessink BG (2000) Measurement errors of instruments for velocity, wave heigt, sand concentration and bed levels in field conditions. Utrecht University, Deltares (WL)

    Google Scholar 

  38. Van Rijn LC, Walstra DJR, Grasmeijer B, Sutherland J, Pan S, Sierra JP (2003) The predictability of cross-shore bed evolution of sandy beaches at the time scale of storms and seasons using process-based profile models. Coast Eng 47(3):295–327

    Article  Google Scholar 

  39. Wang ZB, Hoekstra P, Burchard H, Ridderinkhof H, De Swart HE, Stive MJF (2012) Morphodynamics of the Wadden Sea and its barrier island system. Ocean Coast Manag 68:39–57. doi:10.1016/jocecoaman201112022

    Article  Google Scholar 

  40. Wang Y, Yu Q, Gao S (2014a) Modeling interrelationships between morphological evolution and grain-size trends in back-barrier tidal basins of the East Frisian Wadden Sea. Geo-Mar Lett 34:37–49. doi:10.1007/s00367-013-0349-8

    Article  Google Scholar 

  41. Wang Y, Yu Q, Gao S, Flemming B (2014b) Modeling the effect of progressive grain-size sorting on the scale dependence of back-barrier tidal basin morphology. Cont Shelf Res 91:26–36

    Article  Google Scholar 

  42. Winter C (2011) Macro scale morphodynamics of the German North Sea coast. J Coast Res SI 64:706–710

    Google Scholar 

  43. Winter C, Chiou M, Riethmüller R, Ernstsen VB, Hebbeln D, Flemming BW (2006) The concept of “representative tides” in morphodynamic numerical modelling. Geo-Mar Lett 26(3):125–132. doi:10.1007/s00367-006-0031-5

    Article  Google Scholar 

  44. Winter C, Herrling G, Bartholomä A, Capperucci R, Callies U, Heipke C, Schmidt A, Hillebrand H, Reimers C, Bremer P, Weiler R (2014) Scientific concepts for monitoring the ecological state of German coastal seas (in German). Wasser und Abfall 07–08(2014):21–26. doi:10.1365/s35152-014-0685-7

    Article  Google Scholar 

  45. Zeiler M, Schulz-Ohlberg J, Figge K (2000) Mobile sand deposits and shoreface sediment dynamics in the inner German Bight (North Sea). Mar Geol 170(3-4):363–380. doi:10.1016/S0025-3227(00)00089-X

    Article  Google Scholar 

  46. Zeiler M, Milbradt P, Plüß A, Valerius J (2014) Modelling large scale sediment transport in the German Bight (North Sea). Die Küste 81:369–392

    Google Scholar 

  47. Zhou Z, Coco G, van der Wegen M, Gong Z, Zhang C, Townend I (2015) Modeling sorting dynamics of cohesive and non-cohesive sediments on intertidal flats under the effect of tides and wind waves. Cont Shelf Res 104:76–91. doi:10.1016/j.csr.2015.05.010

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by research projects WIMO (Wissenschaftliche Monitoringkonzepte für die Deutsche Bucht) being financed in equal parts by two ministries in Lower Saxony, Germany, the Ministry of Environment, Energy and Climate Protection and the Ministry of Science and Culture, MorphoWeser being financed by the German Federal Waterways Engineering and Research Institute (BAW), and through DFG-Research Center / Cluster of Excellence “The Ocean in the Earth System”, MARUM. The authors thank three reviewers and the journal editors for their constructive assessments and valuable suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gerald Herrling.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest with third parties.

Additional information

Responsible editor: B.W. Flemming

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Herrling, G., Winter, C. Spatiotemporal variability of sedimentology and morphology in the East Frisian barrier island system. Geo-Mar Lett 37, 137–149 (2017). https://doi.org/10.1007/s00367-016-0462-6

Download citation

Keywords

  • German Bight
  • Tidal Channel
  • Tidal Inlet
  • Brier Skill Score
  • Delta Lobe