Geo-Marine Letters

, Volume 36, Issue 4, pp 271–280 | Cite as

Indices based on silicoflagellate assemblages offer potential for paleo-reconstructions of the main oceanographic zones of the Southern Ocean

  • Andrés S. Rigual-HernándezEmail author
  • Thomas W. Trull
  • Kevin McCartney
  • Anne-Marie Ballegeer
  • Kelly-Anne Lawler
  • Stephen G. Bray
  • Leanne K. Armand


This study reports detailed silicoflagellate assemblage composition and annual seasonal flux from sediment traps at four locations along a transect across the Southern Ocean frontal systems. The four traps sampled the central Subantarctic Zone (SAZ, 47°S site), the Subantarctic Front (SAF, 51°S site), the Polar Frontal Zone (54°S site) and the Antarctic Zone (61°S site) across the 140°E longitude. Annual silicoflagellate fluxes to the deep ocean exhibited a similar latitudinal trend to those of diatom fluxes reported in previous work, with maxima in the Antarctic Zone and minima in the Subantarctic Zone. The data suggest that, along with diatoms, silicoflagellates are important contributors to biogenic silica export at all sites, particularly in the Subantarctic Zone. Two main silicoflagellate genera were observed, with Stephanocha sp. (previously known as Distephanus) dominating polar waters and Dictyocha sp. important in sub-polar waters. This is consistent with previous use of the Dictyocha / Stephanocha ratio to infer paleotemperatures and monitor shifts in the position of the Polar Frontal Zone in the sedimentary record. It appears possible to further refine the application of this approach by using the ratio between two Dictyocha species, because Dictyocha aculeata dominated at the Subantarctic Front, while Dictyocha stapedia dominated in the central Subantarctic Front. Given the well-defined environmental affinities of both species, a new SAF silicoflagellate index (SAF-SI) based on this ratio is proposed as a useful diagnostic for SAF and SAZ water mass signatures in the Plio-Pleistocene and Holocene sedimentary record.


Southern Ocean Sediment Trap Antarctic Circumpolar Current Mooring Line Zonal System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The present work was made possible by the Australian Government’s Australian Antarctic Science Grant Program (Project number 4078) and Macquarie University (A. Rigual-Hernández and L. Armand). The SAZ Project sediment trap moorings received support from the Australian Antarctic Sciences awards AAS1156 and AA2256 (T. Trull), the US National Science Foundation Office of Polar Programs (R. Francois, T. Trull, S. Honjo and S. Manganini), the Belgian Science and Policy Office (F. Dehairs), CSIRO Marine Laboratories, and the Australian Integrated Marine Observing System (of which they are currently a component of the IMOS Southern Ocean Time Series Facility; The authors acknowledge the assistance of Nicole Vella from the Macquarie University Microscopy Unit in the SEM analysis. The article benefitted from constructive comments from two anonymous reviewers.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest with third parties.

Supplementary material

367_2016_444_MOESM1_ESM.xls (40 kb)
ESM 1 (XLS 40 kb)


  1. Abelmann A, Gersonde R (1991) Biosiliceous particle flux in the Southern Ocean. Mar Chem 35:503–536. doi: 10.1016/S0304-4203(09)90040-8 CrossRefGoogle Scholar
  2. Anderson RF, Chase Z, Fleisher MQ, Sachs J (2002) The Southern Ocean’s biological pump during the Last Glacial Maximum. Deep-Sea Res II Top Stud Oceanogr 49:1909–1938. doi: 10.1016/S0967-0645(02)00018-8 CrossRefGoogle Scholar
  3. Anderson RF, Ali S, Bradtmiller LI, Nielsen SHH, Fleisher MQ, Anderson BE, Burckle LH (2009) Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science 323:1443–1448. doi: 10.1126/science.1167441 CrossRefGoogle Scholar
  4. Armand LKA (1997) The use of diatom transfer functions in estimating sea-surface temperature and sea-ice in cores from the southeast Indian Ocean. Australian National University, CanberraGoogle Scholar
  5. Assmy P, Smetacek V, Montresor M et al (2013) Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current. Proc Natl Acad Sci 110:20633–20638. doi: 10.1073/pnas.1309345110 CrossRefGoogle Scholar
  6. Ballegeer A-M, Flores JA, Sierro FJ, Andersen N (2012) Monitoring fluctuations of the Subtropical Front in the Tasman Sea between 3.45 and 2.45 Ma (ODP site 1172). Palaeogeogr Palaeoclimatol Palaeoecol 313–314:215–224. doi: 10.1016/j.palaeo.2011.11.001 CrossRefGoogle Scholar
  7. Barron JA, Bukry D (2007) Development of the California Current during the past 12,000 yr based on diatoms and silicoflagellates. Palaeogeogr Palaeoclimatol Palaeoecol 248:313–338. doi: 10.1016/j.palaeo.2006.12.009 CrossRefGoogle Scholar
  8. Barron JA, Bukry D, Cheshire H (2014) Response of diatom and silicoflagellate assemblages in the central Gulf of California to regional climate change during the past 55 kyrs. Mar Micropaleontol 108:28–40. doi: 10.1016/j.marmicro.2014.02.004 CrossRefGoogle Scholar
  9. Barrows TT, Juggins S, De Deckker P, Calvo E, Pelejero C (2007) Long-term sea surface temperature and climate change in the Australian–New Zealand region. Paleoceanography 22:PA2215. doi: 10.1029/2006PA001328 CrossRefGoogle Scholar
  10. Beal LM, De Ruijter WPM, Biastoch A, Zahn R (2011) On the role of the Agulhas system in ocean circulation and climate. Nature 472:429–436CrossRefGoogle Scholar
  11. Bohaty SM, Harwood DM (1998) Southern Ocean Pliocene paleotemperature variation from high-resolution silicoflagellate biostratigraphy. Mar Micropaleontol 33:241–272CrossRefGoogle Scholar
  12. Boyd PW (2002) Environmental factors controlling phytoplankton processes in the Southern Ocean. J Phycol 38:844–861. doi: 10.1046/j.1529-8817.2002.t01-1-01203.x CrossRefGoogle Scholar
  13. Boyd PW, Watson AJ, Law CS et al (2000) A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407:695–702CrossRefGoogle Scholar
  14. Bray S, Trull TW, Manganini S (2000) SAZ Project moored sediment traps: results of the 1997–1998 deployments. Antarctic Cooperative Research Centre, HobartGoogle Scholar
  15. Ciesielski PF (1974) Silicoflagellate paleotemperature curve for Southern Ocean. Antarct J US 9:269–270Google Scholar
  16. Ciesielski PF, Case SM (1989) Neogene paleoceanography of the Norwegian Sea based upon silicoflagellate assemblage changes in ODP Leg 104 sedimentary sequences. In: Proc ODP, Sci Results, pp 527–542Google Scholar
  17. Ciesielski PF, Weaver E (1974) Early Pliocene temperature changes in the Antarctic seas. Geology 2:511–515CrossRefGoogle Scholar
  18. de Salas MF, Eriksen R, Davidson AT, Wright SW (2011) Protistan communities in the Australian sector of the Sub-Antarctic Zone during SAZ-Sense. Deep-Sea Res II Top Stud Oceanogr 58:2135–2149. doi: 10.1016/j.dsr2.2011.05.032 CrossRefGoogle Scholar
  19. Defelice DR, Wise SW (1981) Surface lithofacies, biofacies, and diatom diversity patterns as models for delineation of climatic change in the southeast Atlantic Ocean. Mar Micropaleontol 6:29–70. doi: 10.1016/0377-8398(81)90011-6 CrossRefGoogle Scholar
  20. Downes S, Budnick A, Sarmiento J, Farneti R (2011) Impacts of wind stress on the Antarctic Circumpolar Current fronts and associated subduction. Geophys Res Lett 38:L11605. doi: 10.1029/2011GL047668 CrossRefGoogle Scholar
  21. Escutia C, Bárcena MA, Lucchi RG, Romero O, Ballegeer AM, Gonzalez JJ, Harwood DM (2009) Circum-Antarctic warming events between 4 and 3.5 Ma recorded in marine sediments from the Prydz Bay (ODP Leg 188) and the Antarctic Peninsula (ODP Leg 178) margins. Glob Planet Chang 69:170–184CrossRefGoogle Scholar
  22. Eynaud F, Giraudeau J, Pichon JJ, Pudsey CJ (1999) Sea-surface distribution of coccolithophores, diatoms, silicoflagellates and dinoflagellates in the South Atlantic Ocean during the late austral summer 1995. Deep-Sea Res I Oceanogr Res Pap 46:451–482. doi: 10.1016/S0967-0637(98)00079-X CrossRefGoogle Scholar
  23. Ferry AJ, Crosta X, Quilty PG, Fink D, Howard W, Armand LK (2015) First records of winter sea ice concentration in the southwest Pacific sector of the Southern Ocean. Paleoceanography 30:1525–1539. doi: 10.1002/2014PA002764 CrossRefGoogle Scholar
  24. Fripiat F, Leblanc K, Elskens M, Cavagna A-J, Armand L, André L, Dehairs F, Cardinal D (2011) Efficient silicon recycling in summer in both the Polar Frontal and Subantarctic Zones of the Southern Ocean. Mar Ecol Prog Ser 435:47–61. doi: 10.3354/meps09237 CrossRefGoogle Scholar
  25. Gersonde R, Crosta X, Abelmann A, Armand L (2005) Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum—a circum-Antarctic view based on siliceous microfossil records. Quat Sci Rev 24:869–896. doi: 10.1016/j.quascirev.2004.07.015 CrossRefGoogle Scholar
  26. Grigorov I, Rigual-Hernandez AS, Honjo S, Kemp AES, Armand LK (2014) Settling fluxes of diatoms to the interior of the antarctic circumpolar current along 170°W. Deep-Sea Res I Oceanogr Res Pap 93:1–13. doi: 10.1016/j.dsr.2014.07.008 CrossRefGoogle Scholar
  27. Herraiz-Borreguero L, Rintoul SR (2010) Subantarctic Mode Water variability influenced by mesoscale eddies south of Tasmania. J Geophys Res Oceans 115:C04004. doi: 10.1029/2008JC005146 CrossRefGoogle Scholar
  28. Herraiz-Borreguero L, Rintoul SR (2011) Regional circulation and its impact on upper ocean variability south of Tasmania. Deep-Sea Res II Top Stud Oceanogr 58:2071–2081. doi: 10.1016/j.dsr2.2011.05.022 CrossRefGoogle Scholar
  29. Honjo S, Francois R, Manganini S, Dymond J, Collier R (2000) Particle fluxes to the interior of the Southern Ocean in the Western Pacific sector along 170°W. Deep-Sea Res II Top Stud Oceanogr 47:3521–3548. doi: 10.1016/S0967-0645(00)00077-1 CrossRefGoogle Scholar
  30. Ingall ED, Diaz JM, Longo AF, Oakes M, Finney L, Vogt S, Lai B, Yager PL, Twining BS, Brandes JA (2013) Role of biogenic silica in the removal of iron from the Antarctic seas. Nat Commun 4:1981. doi: 10.1038/ncomms2981 CrossRefGoogle Scholar
  31. Jordan RW, McCartney K (2015) Stephanocha nom. nov., a replacement name for the illegitimate silicoflagellate genus Distephanus (Dictyochophyceae). Phytotaxa 201:177–187. doi:10.11646/phytotaxa.201.3.1Google Scholar
  32. Kohfeld KE, Graham RM, de Boer AM, Sime LC, Wolff EW, Le Quéré C, Bopp L (2013) Southern Hemisphere westerly wind changes during the Last Glacial Maximum: paleo-data synthesis. Quat Sci Rev 68:76–95. doi: 10.1016/j.quascirev.2013.01.017 CrossRefGoogle Scholar
  33. Kopczynska EE, Dehairs F, Elskens M, Wright S (2001) Phytoplankton and microzooplankton variability between the Subtropical and Polar Fronts south of Australia: thriving under regenerative and new production in late summer. J Geophys Res Oceans 106:31597–31609. doi: 10.1029/2000JC000278 CrossRefGoogle Scholar
  34. Lannuzel D, Bowie AR, Remenyi T, Lam P, Townsend A, Ibisanmi E, Butler E, Wagener T, Schoemann V (2011) Distributions of dissolved and particulate iron in the sub-Antarctic and Polar Frontal Southern Ocean (Australian sector). Deep-Sea Res II Top Stud Oceanogr 58:2094–2112. doi: 10.1016/j.dsr2.2011.05.027 CrossRefGoogle Scholar
  35. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Paver CR, Reagan JR, Johnson DR, Hamilton M, Seidov D (2013) World Ocean Atlas 2013, Volume 1: Temperature. NOAA Atlas NESDIS 73Google Scholar
  36. Malinverno E (2010) Extant morphotypes of Distephanus speculum (Silicoflagellata) from the Australian sector of the Southern Ocean: morphology, morphometry and biogeography. Mar Micropaleontol 77:154–174. doi: 10.1016/j.marmicro.2010.09.002 CrossRefGoogle Scholar
  37. McCartney K, Churchill S, Woestendiek L (1995) Silicoflagellates and ebridians from Leg 138, eastern equatorial Pacific. Proc ODP Sci Results 138:129–162Google Scholar
  38. McCartney K, Witkowski J, Jordan RW, Daugbjerg N, Malinverno E, van Wezel R, Kano H, Abe K, Scott F, Schweizer M, Young JR, Hallegraeff GM, Shiozawa A (2014) Fine structure of silicoflagellate double skeletons. Mar Micropaleontol 113:10–19. doi: 10.1016/j.marmicro.2014.08.006 CrossRefGoogle Scholar
  39. Morley JJ (1989) Variations in high-latitude oceanographic fronts in the southern Indian Ocean: an estimation based on faunal changes. Paleoceanography 4:547–554. doi: 10.1029/PA004i005p00547 CrossRefGoogle Scholar
  40. Murray D, Schrader H (1983) Distribution of silicoflagellates in plankton and core top samples from the Gulf of California. Mar Micropaleontol 7:517–539. doi: 10.1016/0377-8398(83)90013-0 CrossRefGoogle Scholar
  41. Odate T, Fukuchi M (1995) Distribution and community structure of picophytoplankton in the Southern Ocean during the late austral summer of 1992. In: Proc NIPR Symp Polar Biol, pp 86–100Google Scholar
  42. Onodera J, Takahashi K (2005) Silicoflagellate fluxes and environmental variations in the northwestern North Pacific during December 1997–May 2000. Deep-Sea Res I 52:371–388CrossRefGoogle Scholar
  43. Orsi AH, Whitworth T III, Nowlin WD Jr (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res I Oceanogr Res Pap 42:641–673. doi: 10.1016/0967-0637(95)00021-W CrossRefGoogle Scholar
  44. Pichon JJ, Labracherie M, Labeyrie LD, Duprat J (1987) Transfer functions between diatom assemblages and surface hydrology in the southern ocean. Palaeogeogr Palaeoclimatol Palaeoecol 61:79–95. doi: 10.1016/0031-0182(87)90041-1 CrossRefGoogle Scholar
  45. Poelchau HS (1976) Distribution of Holocene silicoflagellates in North Pacific sediments. Micropaleontology 22:164–193CrossRefGoogle Scholar
  46. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625CrossRefGoogle Scholar
  47. Rigual-Hernández AS, Bárcena MA, Sierro FJ, Flores JA, Hernández-Almeida I, Sanchez-Vidal A, Palanques A, Heussner S (2010) Seasonal to interannual variability and geographic distribution of the silicoflagellate fluxes in the Western Mediterranean. Mar Micropaleontol 77:46–57CrossRefGoogle Scholar
  48. Rigual-Hernández AS, Trull TW, Bray SG, Closset I, Armand LK (2015a) Seasonal dynamics in diatom and particulate export fluxes to the deep sea in the Australian sector of the southern Antarctic Zone. J Mar Syst 142:62–74. doi: 10.1016/j.jmarsys.2014.10.002 CrossRefGoogle Scholar
  49. Rigual-Hernández AS, Trull TW, Bray SG, Cortina A, Armand LK (2015b) Latitudinal and temporal distributions of diatom populations in the pelagic waters of the Subantarctic and Polar Frontal Zones of the Southern Ocean and their role in the biological pump. Biogeosci Discuss 12:8615–8690. doi: 10.5194/bgd-12-8615-2015 CrossRefGoogle Scholar
  50. Rintoul SR, Bullister JL (1999) A late winter hydrographic section from Tasmania to Antarctica. Deep-Sea Res I Oceanogr Res Pap 46:1417–1454. doi: 10.1016/S0967-0637(99)00013-8 CrossRefGoogle Scholar
  51. Rintoul SR, Sokolov S (2001) Baroclinic transport variability of the Antarctic Circumpolar Current south of Australia. J Geophys Res 106:2815–2832CrossRefGoogle Scholar
  52. Rintoul SR, Trull TW (2001) Seasonal evolution of the mixed layer in the Subantarctic zone south of Australia. J Geophys Res Oceans 106:31447–31462. doi: 10.1029/2000JC000329 CrossRefGoogle Scholar
  53. Romero OE, Lange CB, Fischer G, Treppke UF, Wefer G (1999) Variability in export production documented by downward fluxes and species composition of marine planktic diatoms: observations from the tropical and equatorial Atlantic. In: Fischer G, Wefer G (eds) Use of proxies in paleoceanography. Springer, Berlin Heidelberg, pp 365–392. doi: 10.1007/978-3-642-58646-0_14 CrossRefGoogle Scholar
  54. Romero OE, Fischer G, Lange CB, Wefer G (2000) Siliceous phytoplankton of the western equatorial Atlantic: sediment traps and surface sediments. Deep Sea Research Part II: Topical studies in Oceanography 47:1939–1959. doi: 10.1016/S0967-0645(00)00012-6
  55. Sarmiento JL, Gruber N, Brzezinski MA, Dunne JP (2004) High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427:56–60CrossRefGoogle Scholar
  56. Sedwick PN, Bowie AR, Trull TW (2008) Dissolved iron in the Australian sector of the Southern Ocean (CLIVAR SR3 section): meridional and seasonal trends. Deep-Sea Res I Oceanogr Res Pap 55:911–925. doi: 10.1016/j.dsr.2008.03.011 CrossRefGoogle Scholar
  57. Shetye S, Mohan R, Nair A (2014) Latitudinal shifts in the Polar Front in Indian sector of the Southern Ocean: evidences from silicoflagellate assemblage. Geosci J 18:241–246. doi: 10.1007/s12303-013-0061-8 CrossRefGoogle Scholar
  58. Shulmeister J, Goodwin I, Renwick J, Harle K, Armand L, McGlone MS, Cook E, Dodson J, Hesse PP, Mayewski P, Curran M (2004) The Southern Hemisphere westerlies in the Australasian sector over the last glacial cycle: a synthesis. Quat Int 118–119:23–53. doi: 10.1016/S1040-6182(03)00129-0 CrossRefGoogle Scholar
  59. Siegel DA, Deuser WG (1997) Trajectories of sinking particles in the Sargasso Sea: modeling of statistical funnels above deep-ocean sediment traps. Deep-Sea Res I Oceanogr Res Pap 44:1519–1541. doi: 10.1016/S0967-0637(97)00028-9 CrossRefGoogle Scholar
  60. Sokolov S, Rintoul SR (2002) Structure of Southern Ocean fronts at 140°E. J Mar Syst 37:151–184. doi: 10.1016/S0924-7963(02)00200-2 CrossRefGoogle Scholar
  61. Trull TW, Rintoul SR, Hadfield M, Abraham ER (2001a) Circulation and seasonal evolution of polar waters south of Australia: implications for iron fertilization of the Southern Ocean. Deep-Sea Res II Top Stud Oceanogr 48:2439–2466. doi: 10.1016/S0967-0645(01)00003-0 CrossRefGoogle Scholar
  62. Trull TW, Bray SG, Manganini SJ, Honjo S, François R (2001b) Moored sediment trap measurements of carbon export in the Subantarctic and Polar Frontal zones of the Southern Ocean, south of Australia. J Geophys Res Oceans 106:31489–31509. doi: 10.1029/2000JC000308 CrossRefGoogle Scholar
  63. Weeding B, Trull TW (2014) Hourly oxygen and total gas tension measurements at the Southern Ocean Time Series site reveal winter ventilation and spring net community production. J Geophys Res Oceans 119:348–358. doi: 10.1002/2013JC009302 CrossRefGoogle Scholar
  64. Whitehead JM, Bohaty SM (2003) Pliocene summer sea surface temperature reconstruction using silicoflagellates from Southern Ocean ODP Site 1165. Paleoceanography 18:1075. doi: 10.1029/2002PA000829 CrossRefGoogle Scholar
  65. Wright SW, Thomas DP, Marchant HJ, Higgins HW, Mackey MD, Mackey DJ (1996) Analysis of phytoplankton of the Australian sector of the Southern Ocean: comparisons of microscopy and size frequency data with interpretations of pigment HPLC data using the \‘CHEMTAX\’ matrix factorisation program. Mar Ecol Prog Ser 144:285–298. doi: 10.3354/meps144285 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Andrés S. Rigual-Hernández
    • 1
    Email author
  • Thomas W. Trull
    • 2
    • 3
  • Kevin McCartney
    • 4
  • Anne-Marie Ballegeer
    • 1
  • Kelly-Anne Lawler
    • 1
  • Stephen G. Bray
    • 2
  • Leanne K. Armand
    • 1
  1. 1.Marine Research Centre, Department of Biological SciencesMacquarie UniversityNorth RydeAustralia
  2. 2.Antarctic Climate and Ecosystems Cooperative Research CentreUniversity of TasmaniaHobartAustralia
  3. 3.CSIRO Oceans and Atmosphere FlagshipHobartAustralia
  4. 4.Department of Environmental StudiesUniversity of Maine at Presque IslePresque IsleUSA

Personalised recommendations