Geo-Marine Letters

, Volume 36, Issue 1, pp 35–50 | Cite as

Holocene evolution of the Xagó dune field (Asturias, NW Spain) reconstructed by means of morphological mapping and ground penetrating radar surveys

  • G. Flor-BlancoEmail author
  • D. Rubio-Melendi
  • G. Flor
  • J. P. Fernández-Álvarez
  • D. W. T. Jackson


Morphological mapping and ground penetrating radar (GPR) profiling were carried out in the Xagó aeolian dune field along the Asturias coast of NW Spain to reconstruct its Holocene evolution. Such data provide a much more accurate picture than can be inferred from surficial morphological studies alone. Three successive dune sequences were identified: an inner (climbing dunes), a middle (large transverse ridge and minor elongated dunes) and an outer dune field (foredune with lee-projection dunes and incipient foredune). A late Holocene sea-level fall is inferred from the relative position of the dunes together with a prograding tendency. Long intervals of stabilisation, during which each dune sequence was formed, are interspersed within the deposit. The GPR records also reveal a period of erosion in the southern middle field, which was followed by accretion. The results show that both progradational and erosional processes occurred during the Holocene evolution of the dune field, features that can be extended to other dune fields in similar settings at these latitudes. Stratigraphically, the Xagó dune field is an excellent example where internal reflectors reveal an erosion surface representing a transgressive or sea-level stillstand event that had previously remained undetected.


Beach Ground Penetrate Radar Aeolian Sand Dune Field Sand Sheet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank two referees and the editors for their comments that greatly helped to improve the manuscript. Many thanks too to Luis Pando (University of Oviedo) for his help with the figures.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest with third parties.


  1. Alonso A, Pagés JL (2007) Stratigraphy of Late Pleistocene coastal deposits in northern Spain. J Iber Geol 33:207–220Google Scholar
  2. Araújo-Gomes J, Ramos-Pereira A (2015) The new CutSprof sampling tool and method for micromorphological and microfacies analyses of subsurface salt marsh sediments, Algarve, Portugal. Geo-Mar Lett 35:69–75CrossRefGoogle Scholar
  3. Bakker MAJ, van Heteren S, Vonhögen LM, van der Spek AJF, van der Valk B (2012) Recent coastal dune development: effects of sand nourishments. J Coast Res 28:587–601CrossRefGoogle Scholar
  4. Bigarella J, Becker RD, Duarte GM (1969) Coastal dune structures from Paraná (Brazil). Mar Geol 7:5–55CrossRefGoogle Scholar
  5. Borja F, Díaz del Olmo F (1996) Manto eólico litoral (MEL) de El Abalario (Huelva, España): episodios morfogenéticos posteriores al 22.000 BP. In: Pérez Alberti A, Martíni P, Chesworth W, Martínez Cortizas A (eds) Dinámica y evolución de medios Cuaternarios. Consellería de Cultura, Xunta de Galicia, pp 375–390Google Scholar
  6. Bristow CS (2009) Ground penetrating radar in aeolian dune sands. In: Jol HM (ed) Ground penetrating radar: theory and applications. Elsevier, Amsterdam, pp 271–297CrossRefGoogle Scholar
  7. Bristow CS, Jol HM (eds) (2003) Ground penetrating radar in sediments. Geol Soc Spec Publ 211. Geol Soc Publ House, BathGoogle Scholar
  8. Bristow CS, Pucillo K (2006) Quantifying rates of coastal progradation from sediment volume using GPR and OSL: the Holocene fill of Guichen Bay, south-east South Australia. Sedimentology 53:769–788CrossRefGoogle Scholar
  9. Bristow CS, Pugh J, Goodall T (1996) Internal structure of aeolian dunes in Abu Dhabi revealed using ground penetrating radar. Sedimentology 43:995–1003CrossRefGoogle Scholar
  10. Bristow CS, Chroston PN, Bailey SD (2000) The structure and development of foredunes on a locally prograding coast: insights from ground-penetrating radar surveys, Norfolk, UK. Sedimentology 47:923–944CrossRefGoogle Scholar
  11. Bristow CS, Jones BG, Nanson GC, Hollands C, Coleman M, Price DM (2007) GPR surveys of vegetated linear dune stratigraphy in central Australia: evidence for linear dune extension with vertical and lateral accretion. Geol Soc Am Spec Pap 432:19–33Google Scholar
  12. Buynevich IV, FitzGerald DM (2001) Styles of coastal progradation revealed in subsurface records of paraglacial barriers, New England, USA. J Coast Res Spec Issue 34:194–208Google Scholar
  13. Buynevich IV, Jol HM, FitzGerald DM (2009) Coastal environments. In: Jol HM (ed) Ground penetrating radar: theory and applications. Elsevier, Amsterdam, pp 299–322CrossRefGoogle Scholar
  14. Carter RWG, Devoy RJN, Shaw J (1989) Late Holocene sea levels in Ireland. J Quat Sci 4:7–24CrossRefGoogle Scholar
  15. Cearreta A, Edeso JM, Merino A, Ugalde T, Ugarte FM (1990) Las dunas litorales de Barrika (costa occidental de Bizkaia). Kobie 19:77–83Google Scholar
  16. Cearreta A, Alday M, Freitas MDC, Andrade C (2007) Postglacial foraminifera and paleoenvironments of the Melides Lagoon (SW Portugal): towards a regional model of coastal evolution. J Foram Res 37:125–135CrossRefGoogle Scholar
  17. Chust G, Borja A, Liria P, Galparsoro I, Marcos M, Caballero A, Castro R (2009) Human impacts overwhelm the effects of sea-level rise on Basque coastal habitats (N Spain) between 1954 and 2004. Estuar Coast Shelf Sci 84:453–462CrossRefGoogle Scholar
  18. Clemmensen LB, Andreasen F, Heinemeier J, Murray A (2001) A Holocene coastal aeolian system, Vejers, Denmark: landscape evolution and sequence stratigraphy. Terra Nova 13:129–134CrossRefGoogle Scholar
  19. Cooper WS (1958) Coastal sand dunes of Oregon and Washington. Geol Soc Am 72:1–169Google Scholar
  20. Costas S, Alejo I, Rial F, Lorenzo H, Nombela M (2006) Cyclical evolution of a modern transgressive sand barrier in northwestern Spain elucidated by GPR and aerial photos. J Sediment Res 76:1077–1096CrossRefGoogle Scholar
  21. Danielsen R, Castilho AM, Dinis PA, Almeida AC, Callapez PM (2012) Holocene interplay between a dune field and coastal lakes in the Quiaios-Tocha region, central littoral Portugal. The Holocene 22:383–395CrossRefGoogle Scholar
  22. Davidson-Arnott RG (2010) Introduction to coastal processes and geomorphology. Cambridge University Press, CambridgeGoogle Scholar
  23. Davis RA Jr, FitzGerald DM (2004) Beaches and coasts. Blackwell, MaldenGoogle Scholar
  24. Edeso JM (1994) El relleno holoceno de la depresión de Zarauz. Lurralde 17:115–152Google Scholar
  25. Favennec J (2002) Paysages des dunes littorales non boisées de la côte atlantique. In: Connaissance et gestion durable des dunes de la côte atlantique. Les Dossiers Forestiers, ONF, Paris, 11, pp 93–108Google Scholar
  26. Favennec J, Mallet C (2008) Un atlas de l’aléa érosion marine réalisé dans le cadre de l’observatoire de la côte pour guider les choix d’aménagement de la côte sableuse d’Aquitaine. In: Proc Int Pluridisc Conf The Littoral: Challenge, Dialogue, Action. Thème 1, séance 2. Lille, France.
  27. Feal-Pérez AM (2012) Evolución morfodinámica y procesos actuales en costas rocosas. PhD Thesis, University of Santiago de CompostelaGoogle Scholar
  28. Feal-Pérez A, Blanco-Chao R, Valcárcel-Díaz M (2009) Influencia de formas y procesos heredados en la evolución reciente y en los procesos morfodinámicos actuales en un sector de la costa rocosa: Punta Gallín, costa Cantábrica gallega. Rev Soc Geol Esp 22:67–78Google Scholar
  29. Feal-Pérez A, Blanco-Chao R, Ferro-Vázquez C, Martínez-Cortizas A, Costa-Casais M (2014) Late-Holocene storm imprint in a coastal sedimentary sequence (Northwest Iberian coast). The Holocene 24:477–488CrossRefGoogle Scholar
  30. Fisher TG, Jol HM, Smith DG (1995) Ground-penetrating radar used to assess aggregate in catastrophic flood deposits, northeast Alberta, Canada. Can Geotech J 32:871–879CrossRefGoogle Scholar
  31. Flor G (1978) Relación entre la circulación costera y la distribución de sedimentos en la región de Cabo Peñas. Trab Geol 10:183–194Google Scholar
  32. Flor G (1981) Las dunas eólicas costeras de la playa de Xagó. Trab Geol 11:61–71Google Scholar
  33. Flor G (1986) Sedimentología de una duna lingüiforme en la playa de Xagó (Asturias). In: Proc IX Congr Nacional de Sedimentología, I. Salamanca, pp 317–328Google Scholar
  34. Flor G (1992) Tipología, catalogación y procesos erosión/sedimentación de los campos dunares eólicos de Galicia (NO de España). Thalassas 10:9–39Google Scholar
  35. Flor G (1998) Classification and characterization of aeolian dunes in temperate rocky coasts. The Spanish Peninsular aeolian fields. In: Soares de Carvalho G, Veloso Gomes F, Taveira Pinto F (eds) Dunas da zona costeira de Portugal. Associação Eurocoast-Portugal, pp 29–42Google Scholar
  36. Flor G, Flor-Blanco G (2014) Raised beaches in the Cantabrian coast. In: Gutiérrez F, Gutiérrez M (eds) Landscapes and landforms of Spain. Springer, Dordrecht, pp 239–248CrossRefGoogle Scholar
  37. Flor G, Lharti S (2008) Estratigrafía y sedimentología del recubrimiento costero de la ciudad de Gijón (Asturias). Trab Geol 28:137–157Google Scholar
  38. Flor G, Martínez-Cedrún P, Flor-Blanco G (2011) Campos dunares de Asturias, Cantabria y País Vasco. In: Sanjaume E, Gracia FJ (eds) Las dunas en España. Sociedad Española de Geomorfología, pp 127–159Google Scholar
  39. Flor G, Flor-Blanco G, Flores-Soriano C (2014) Cambios ambientales por los temporales de invierno de 2014 en la costa asturiana (NO de España). Trab Geol 34:97–123Google Scholar
  40. Flor-Blanco G, Flor G, Pando L (2013) Evolution of the Salinas-El Espartal and Xagó beach/dune systems in north-western Spain over recent decades: evidence for responses to natural processes and anthropogenic interventions. Geo-Mar Lett 33:143–157CrossRefGoogle Scholar
  41. García-Albá J, Morey M (1981) La vegetación de las dunas litorales y su relación con la morfología dunar y el gradiente de influencia marina. Mediterránea 5:3–22Google Scholar
  42. García-Artola A, Cearreta A, Leorri E (2015) Relative sea-level changes in the Basque coast (northern Spain, Bay of Biscay) during the Holocene and Anthropocene: the Urdaibai estuary case. Quat Int 364:172–180CrossRefGoogle Scholar
  43. García-Novo F, Ramírez L, Torres A (1975) El sistema de dunas de Doñana. Nat Hisp 5:1–56Google Scholar
  44. Girardi JD, Davis DM (2010) Parabolic dune reactivation and migration at Napeague, NY, USA: insights from aerial and GPR imagery. Geomorphology 114:530–541CrossRefGoogle Scholar
  45. Gómez-Ortiz D, Martín-Crespo T, Rodríguez I, Sánchez MJ, Montoya I (2009) The internal structure of modern barchan dunes of the Ebro River Delta (Spain) from ground penetrating radar. J Appl Geophys 68:159–170CrossRefGoogle Scholar
  46. González Taboada F, Anadón R (2011) Análisis de escenarios de cambio climático en Asturias. Asturias Regional Government, AsturiasGoogle Scholar
  47. González-Villanueva R, Costas S, Duarte H, Pérez-Arlucea M, Alejo I (2011a) Blowout evolution in a coastal dune: using GPR, aerial imagery and core records. J Coast Res Spec Issue 64:278–282Google Scholar
  48. González-Villanueva R, Costas S, Pérez-Arlucea M, Alejo I, Rial F (2011b) Evolución del sector dunar sur del complejo de Corrubedo. Geogaceta 50(2):177–180Google Scholar
  49. Gracia J, del Río L, Alonso C, Benavente J, Anfuso G (2006) Historical evolution and present state of the coastal dune systems in the Atlantic coast of Cádiz (SW Spain): paleoclimatic and environmental implication. J Coast Res Spec Issue 48:55–63Google Scholar
  50. Gujar AR, Ganesan P, Iyer SD, Gaonkar SS, Ambre NV, Loveson VJ, Mislankar PG (2011) Influence of morphodynamic variability over seasonal beach sediments and its probable effect on coastal development. Ocean Coast Manag 54(7):514–523CrossRefGoogle Scholar
  51. Harari Z (1996) Ground-penetrating radar (GPR) for imaging stratigraphic features and groundwater in sand dunes. J Appl Geophys 36:43–52CrossRefGoogle Scholar
  52. Havholm KG, Ames DV, Whittecar GR, Wenell BA, Riggs SR, Jol HM, Beger GW, Holmes MA (2004) Stratigraphy of back-barrier coastal dunes, northern North Carolina and southern Virginia. J CoastRes 20:980–999CrossRefGoogle Scholar
  53. Hesp PA (1984) Foredune formation in southeast Australia. In: Coastal geomorphology in Australia. Academic Press, Sydney, pp 69–97Google Scholar
  54. Hesp PA (1999) The beach backshore and beyond. In: Short AD (ed) Handbook of beach and shoreface morphodynamics. Wiley, New York, pp 145–170Google Scholar
  55. Hesp PA (2002) Foredunes and blowouts: initiation, geomorphology and dynamics. Geomorphology 48:245–268CrossRefGoogle Scholar
  56. Hesp PA, Short AD (1999) Barrier morphodynamics. In: Short AD (ed) Handbook of beach and shoreface morphodynamics. Wiley, New York, pp 307–333Google Scholar
  57. Hoyos M (1989) La Cornisa Cantábrica. In: Pérez-González A, Cabra P, Martín-Serrano Á (eds) Mapa del Cuaternario de España. ITGE, Madrid, pp 105–118Google Scholar
  58. Iglesias G, Carballo R (2010) Offshore and inshore wave energy assessment: Asturias (N Spain). Energy 35:1964–1972CrossRefGoogle Scholar
  59. Jol HM (ed) (2009) Ground penetrating radar: theory and applications. Elsevier, AmsterdamGoogle Scholar
  60. Kim D, Grant WE, Cairns DM, Bartholdy J (2013) Effects of the North Atlantic Oscillation and wind waves on salt marsh dynamics in the Danish Wadden Sea: a quantitative model as proof of concept. Geo-Mar Lett 33:253–261CrossRefGoogle Scholar
  61. Łabuz TA (2005) Present-day dune environment dynamics on the coast of the Swina Gate Sandbar (Polish West coast). Estuar Coast Shelf Sci 62:507–520CrossRefGoogle Scholar
  62. Leatherman SP (1987) Coastal geomorphological applications of ground penetrating radar. J Coast Res 3:397–399Google Scholar
  63. Lee Y, Gouramanis C, Switzer AD, Bristow CS, Soria JLA, Pham DT, Lam DD, Que HD (2013) Ground penetrating radar (GPR) survey of formerly mined coastal sand in central Vietnam: a rapid, non-invasive method for investigating the extent and impact of mined areas. J Geol Earth Sci 1:11–19Google Scholar
  64. Leorri E, Cearreta A, Milne G (2012) Field observations and modelling of Holocene sea-level changes in the southern Bay of Biscay: implication for understanding current rates of relative sea-level change and vertical land motion along the Atlantic coast of SW Europe. Quat Sci Rev 42:59–73CrossRefGoogle Scholar
  65. Martínez Cortizas A, Costa Casais M (1997) Indicios de variaciones del nivel del mar en la ría de Vigo durante los últimos 3000 años. Gallaecia 16:23–47Google Scholar
  66. Martínez Graña A, Goy JL, Zazo C (2000) Actividad tectónica en el Noroeste Peninsular, en base a los registros de los depósitos costeros de los últimos 130.000 años (rías Arosa-Pontevedra, Galicia). Geotemas 1(4):263–266Google Scholar
  67. Mary G (1983) Evolución del margen costero de la Cordillera Cantábrica de Asturias desde el Mioceno. Trab Geol 13:3–35Google Scholar
  68. Mary G (1992) La evolución del litoral cantábrico durante el Holoceno. In: Cearreta A, Ugarte FM (eds) Proc The Late Quaternary in the Western Pyrenean Region. Bilbao, pp 161–169Google Scholar
  69. Moura D, Veiga-Pires C, Albardeiro L, Boski T, Rodrigues AL, Tareco H (2007) Holocene sea level fluctuations and coastal evolution in the central Algarve (southern Portugal). Mar Geol 237:127–142CrossRefGoogle Scholar
  70. Neal A (2004) Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth Sci Rev 66(3-4):261–330CrossRefGoogle Scholar
  71. NGIA (2014) Sailing Direction (Enroute) West Coast of Europe and Northwest Africa, 15th edn. National Geospatial-Intelligence Agency, 143.
  72. Nielsen L, Møller I, Nielsen LH, Johannessen PN, Pejrup M, Andersen T, Korshøj JS (2009) Integrating ground-penetrating radar and borehole data from a Wadden Sea barrier island. J Appl Geophys 68(1):47–59CrossRefGoogle Scholar
  73. Psuty NP (1989) An application of science to the management of coastal sand dunes along the Atlantic coast of the USA. In: Gimingham CH, Ritchie W, Willetts BB, Willis AJ (eds) Coastal sand dunes. Proc R Soc Edinb 96B: 289–307Google Scholar
  74. Psuty NP (2004) The coastal foredune: a morphological basis for regional coastal dune development. In: Martínez ML, Psuty NP (eds) Coastal dunes. Ecology and conservation. Springer, Berlin, pp 11–27Google Scholar
  75. Pye K, Tsoar H (1990) Aeolian sand and sand dunes. Unwin Hyman, LondonCrossRefGoogle Scholar
  76. Pye K, Saye S, Blott S (2007) Sand dune processes and management. Part 2: Sand dune processes and morphology. R&D Technical Report FD1302/TR.
  77. Ramos R, Freitas MC, Andrade C, Bristow C, Costas S, Grangeia C, Hermozilha H, Senos Matias MJ (2010) Sedimentary structure of the Nazaré coastal dunes (Portugal). In: Ground Penetrating Radar (GPR). Proc 13th Int Conf Ground Penetrating Radar. IEEE Xplore, Lecce, Italy, pp 973–978Google Scholar
  78. Ramos R, Freitas MC, Bristow C, Andrade C, Hermozilha H, Grangeia C, Senos Matias MJ (2011) Sedimentary architecture of the Santo André transverse dunes (Portugal) interpreted from ground-penetrating radar. J Coast Res Spec Issue 64:303–307Google Scholar
  79. Rasilla D, García Codrón JC, Hernández Gimena A (2004) Las mareas atmosféricas en la costa norte de la península Ibérica. In: García Codrón JC, Diego Liaño C, Fernández de Arroyábade Hernáez P, Garmendia Pedraja C, Rasilla Álvarez D (eds) Proc El Clima entre el Mar y la Montaña, Serie A, no 4. Asociación Española de Climatología and University of Cantabria, Santander, pp 135–144Google Scholar
  80. Rodríguez Santalla I, Sánchez García MJ, Montoya Montes I, Gómez Ortiz D, Martín Crespo T, Serra Raventos J (2009) Internal structure of the aeolian sand dunes of El Fangar spit, Ebro Delta (Tarragona, Spain). Geomorphology 104:238–252CrossRefGoogle Scholar
  81. Rodríguez-Asensio JA, Flor G (1979) Estudio del yacimiento prehistórico de Bañugues y su medio de depósito (Gozón, Asturias). Zephyrus 29:161–178Google Scholar
  82. Rubin DM (1987) Cross-bedding, bedforms, and paleocurrents. Concepts in sedimentology and paleontology, vol 1. SEPM, TulsaCrossRefGoogle Scholar
  83. Ruz MH, Allard M (1995) Sedimentary structures of cold-climate coastal dunes, Eastern Hudson Bay, Canada. Sedimentology 42:725–734CrossRefGoogle Scholar
  84. Short AD (2006) Australian beach systems—nature and distribution. J Coast Res 22:11–27CrossRefGoogle Scholar
  85. Short AD, Jackson DWT (2013) Beach morphodynamics. In: Shroder JF (ed) Treatise on geomorphology. Elsevier, Amsterdam, pp 106–129CrossRefGoogle Scholar
  86. Suárez Ruiz I, Sánchez de la Torre L (1983) Evolución sedimentaria del sistema playa-duna de Xagó (Asturias). Trab Geol 13:113–128Google Scholar
  87. Tanner WF (1995) Origin of beach ridges and swales. Mar Geol 129:149–161CrossRefGoogle Scholar
  88. Truman CC, Perkins HF, Asmussen LE, Allison HD (1988) Some applications of ground-penetrating radar in the southern coastal plains regions of Georgia. The Georgia Agricultural Experiment Stations, College of Agriculture, University of Georgia, no 27Google Scholar
  89. Ulriksen CPF (1982) Application of impulse radar to civil engineering. PhD Thesis, Lund University of Technology, and Geophysical Survey Systems Inc, Hudson, NHGoogle Scholar
  90. Vallejo I (2007) Caracterización geomorfológica y análisis de la evolución reciente del sistema de dunas activas de P.N. de Doñana (1956-2011). PhD Thesis, University of SevillaGoogle Scholar
  91. Van Dam RL (2012) Landform characterization using geophysics: recent advances, applications, and emerging tools. Geomorphology 137:57–73CrossRefGoogle Scholar
  92. Van Dam RL, Nichol SL, Augustinus PC, Parnell KE, Hosking PL, McLean RF (2003) GPR stratigraphy of a large active dune on Parengarenga Sandspit, New Zealand. Lead Edge 22(9):865–881CrossRefGoogle Scholar
  93. Van Heteren S, FitzGerald DM, McKinlay PA, Buynevich IV (1998) Radar facies of paraglacial barrier systems: coastal New England, USA. Sedimentology 45:181–200CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • G. Flor-Blanco
    • 1
    Email author
  • D. Rubio-Melendi
    • 2
  • G. Flor
    • 1
  • J. P. Fernández-Álvarez
    • 2
  • D. W. T. Jackson
    • 3
  1. 1.Department of Geology, GeoQUO Research GroupUniversity of OviedoOviedoSpain
  2. 2.Hydro-Geophysics and NDT Modelling Unit, Polytechnical School of MieresUniversity of OviedoMieresSpain
  3. 3.School of Environmental SciencesUlster UniversityColeraineUK

Personalised recommendations