Skip to main content

Advertisement

Log in

Pyrite as a proxy for the identification of former coastal lagoons in semiarid NE Brazil

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

This work aimed to test the suitability of pyrite (FeS2) as a proxy for reconstructing past marine environmental conditions along the semiarid coast of Brazil. Morphological description combined with physicochemical analyses including Fe partitioning were conducted for soil depth profiles (30 and 60 cm depths) at three sites in two contrasting lagoons of the state of Ceará: a suspected former lagoon that would have been transformed into a freshwater “lake” at a site vegetated by Juncus effusus (site P1), and another lagoon with connection to the sea at sites vegetated by J. effusus (site P2) or Portulaca oleracea (site P3). Soil samples were collected in September 2010. Site P3 had more reducing conditions, reaching Eh values of –132 mV in the surface layer (0–10 cm), whereas minimum values for the P1 and P2 sites were +219 and +85 mV, respectively. Lower pyritic Fe values were found at site P1, with a degree of pyritization (DOP) ranging from 10 to 13%. At sites P2 and P3, DOP ranged from 9 to 67% and from 55 to 72%, respectively. These results are consistent with an interruption of tidal channels by eolian dune migration inducing strong changes in the hydrodynamics and physicochemical characteristics (lower salinity, oxidizing conditions) of these sites, causing the dieback of suspected former mangroves and a succession to freshwater marshes with an intermediate salt marsh stage. Together with other physicochemical signatures, pyrite can evidently serve as a useful proxy in tracking environmental changes in such ecotones, with implications for coastal management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AOAC (1970) Official methods of analysis of the Association of Official Analytical Chemists. Washington, DC

  • Aragon GT, Miguens FC (2001) Microscopic analysis of pyrite in the sediments of two Brazilian mangrove ecosystems. Geo-Mar Lett 21:157–161. doi:10.1007/s003670100078

    Article  Google Scholar 

  • Araújo JMC Jr, Otero XL, Marques AGB, Nóbrega GN, Silva JRF, Ferreira TO (2012) Selective geochemistry of iron in mangrove soils in a semiarid tropical climate: effects of the burrowing activity of the crabs Ucides cordatus and Uca maracoani. Geo-Mar Lett 32:289–300. doi:10.1007/s00367-011-0268-5

    Article  Google Scholar 

  • Benedetti MM, Curi N, Sparovek G, Carvalho Filho A, Silva SHG (2011) Updated Brazilian’s georeferenced soil database – an improvement for international scientific information exchanging. In: Güngör EBO (ed) Principles, applications and assessment in soil science. InTech, Rijeka, pp 309–332

    Google Scholar 

  • Berner RA (1970) Sedimentary pyrite formation. Am J Sci 268:1–23

    Article  Google Scholar 

  • Berner RA (1982) Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. Am J Sci 282:451–473

    Article  Google Scholar 

  • Berner RA (1984) Sedimentary pyrite formation: an update. Geochim Cosmochim Acta 48(4):605–615. doi:10.1016/0016-7037(84)90089-9

    Article  Google Scholar 

  • Berner RA, Raiswell R (1983) Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. Geochim Cosmochim Acta 47:855–862. doi:10.1016/0016-7037(83)90151-5

    Article  Google Scholar 

  • Berner RA, Raiswell R (1984) C/S method for distinguishing freshwater from marine sedimentary rocks. Geology 12:365–368

    Article  Google Scholar 

  • Berner RA, De Leeuw JW, Spiro B, Murchison DG, Eglinton G (1985) Sulphate reduction, organic matter decomposition and pyrite formation. Philos Trans R Soc Lond Ser A 315(1531):25–38. doi:10.1098/rsta.1985.0027

    Article  Google Scholar 

  • Bittencourt ACSP, Martin L, Vilas-Boas GS, Flexor JM (1979) Quaternary marine formations of the coast of the state of Bahia (Brazil). In: Suguio K et al (eds) Quaternary marine formations of the State of Bahia (Brazil). Proc Int Symp Coastal Evolution in the Quaternary, São Paulo, pp 242–253

    Google Scholar 

  • Bower CA, Reitemeier RF, Fireman M (1952) Exchangeable cation analysis of saline and alkali soils. Soil Sci 73:251–262. doi:10.1097/00010694-195204000-00001

    Article  Google Scholar 

  • Brevik EC, Homburg JA (2004) A 5,000 year record of carbon sequestration from a coastal lagoon and wetland complex, Southern California, USA. Catena 57(3):221–232

    Article  Google Scholar 

  • Canfield DE, Berner R (1987) Dissolution and pyritization of magnetite in anoxic marine sediments. Geochim Cosmochim Acta 51:645–659

    Article  Google Scholar 

  • Carolin R (1987) A review of the family Portulacaceae. Aust J Bot 35(4):383–412

    Article  Google Scholar 

  • Cooper M, Mendes LMS, Silva WLC, Sparovek G (2005) A national soil profile database for Brazil available to international scientists. Soil Sci Soc Am 69:649–652. doi:10.2136/sssaj2004.0140

    Article  Google Scholar 

  • Costa CSB, Davy AJ (1992) Coastal saltmarsh communities of Latin America. In: Seeliger U (ed) Coastal plant communities of Latin America. Academic Press, San Diego, pp 179–199

    Chapter  Google Scholar 

  • Danovaro R, Pusceddu A (2007) Biodiversity and ecosystem functioning in coastal lagoons: does microbial diversity play any role? Estuarine Coastal Shelf Sci 75(1):4–12. doi:10.1016/j.ecss.2007.02.030

    Article  Google Scholar 

  • Duarte CM, Middelburg JJ, Caraco N (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2:1–8. doi:10.5194/bg-2-1-2005

    Article  Google Scholar 

  • Ervin GN, Wetzel RG (2002) Influence of a dominant macrophyte, Juncus effusus, on wetland plant species richness, diversity, and community composition. Oecologia 130(4):626–636

    Article  Google Scholar 

  • Esteves PA (1983) Levels of phosphate, calcium, magnesium and organic matter in the sediments of some Brazilian reservoirs and implications for the metabolism of the ecosystems. Arch Hydrobiol 96:129–138

    Google Scholar 

  • Fortin D, Leppard GG, Tessier A (1993) Characteristic of lacustrine diagenetic iron oxyhydroxides. Geochim Cosmochim Acta 57:4391–4404

    Article  Google Scholar 

  • Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis. Part 1. Physical and mineralogical methods, 2nd edn. SSSA Book Series, Madison

    Google Scholar 

  • Giblin AE (1988) Pyrite formation in marshes during early diagenesis. Geomicrobiol J 6(2):77–97

    Article  Google Scholar 

  • Gustafsson JP (2013) Visual MINTEQ version 3.1. Department of Land and Water Resources Engineering, Royal Institute of Technology, Stockholm

    Google Scholar 

  • Henderson GM (2002) New oceanic proxies for paleoclimate. Earth Planet Sci Lett 203:1–13

    Article  Google Scholar 

  • Huerta-Díaz MA, Morse JW (1990) A quantitative method for determination of trace metals in anoxic marine sediments. Geochim Cosmochim Acta 29:119–144

    Google Scholar 

  • Huminicki D, Rimstidt JD (2009) Iron oxyhydroxide coating of pyrite for acid mine drainage control. Appl Geochem 24(9):1626–1634

    Article  Google Scholar 

  • IUSS Working Group WRB (2014) World Reference Base for Soil Resources 2014: International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports 106, FAO, Rome

  • Jacomine PKT, Almeida JC, Medeiros LAR (1973) Levantamento exploratório-reconhecimento de solos do Estado do Ceará. SUDENE, Recife

    Google Scholar 

  • Jimenez JA, Maia LP, Serra J, Morais J (1999) Aeolian dune migration along the Ceará coast, north-eastern Brazil. Sedimentology 46:689–701

    Article  Google Scholar 

  • Kjerfve B (1994) Coastal lagoons. In: Kjerfve B (ed) Coastal lagoon processes. Elsevier Oceanography Series, vol 60., pp 1–8. doi:10.1016/S0422-9894(08)70006-0

    Google Scholar 

  • Knoppers B (1994) Aquatic primary production in coastal lagoons. In: Kjerfve B (ed) Coastal lagoon processes. Elsevier Oceanography Series, vol 60., pp 243–286. doi:10.1016/S0422-9894(08)70014-X

    Google Scholar 

  • Konsten CJM, Brinkman R, Andriesse W (1988) A field laboratory method to determine total potential and actual acidity in acid sulphate soils. In: Dost H (ed) Selected Papers of the Dakar Symposium on Acid Sulphate Soils. ILRI Publication 44, Dakar, Senegal, pp 106–134

  • Levin LA, Boesch DF, Covich A, Dahm C, Erseus C, Ewel KC, Kneib RT, Moldenke A, Palmer MA, Snelgrove P, Strayer D, Weslawski JM (2001) The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems 4:430–451

    Article  Google Scholar 

  • Lima VLO (2012) Desenvolvimento para a vida: os sentidos do turismo comunitário em Caetanos de Cima, no assentamento Sabiaguaba – Amontada/CE. Dissertation, Federal University of Ceará, Brazil

  • Machado W, Borrelli NL, Ferreira TO, Marques AG, Osterrieth M, Guizan C (2014) Trace metal pyritization variability in response to mangrove soil aerobic and anaerobic oxidation processes. Mar Pollut Bull 79(1):365–370. doi:10.1016/j.marpolbul.2013.11.016

    Article  Google Scholar 

  • Mackin JE, Swider KT (1989) Organic matter decomposition pathway and oxygen consumption in coastal marine sediments. J Mar Res 47:681–716

    Article  Google Scholar 

  • Maia LP (1998) Processo costeros y balance sedimentario ao lo largo de Fortaleza (NE Brasil): implicaciones para uma gestión adecuada de la zona litoral. Dissertation, Universitat de Barcelona, Spain

  • Mehlich A (1953) Determination of P, Ca, Mg, K, Na, and NH4. Soil Test Division Mimeo, North Carolina Department of Agriculture, Raleigh, NC

    Google Scholar 

  • Meireles AJA, Arruda MGC, Gorayeb A, Thiers PRL (2005) Integração dos indicadores geoambientais de flutuações do nível relativo do mar e de mudanças climáticas no litoral cearense. Mercator 4(8):109–134

    Google Scholar 

  • Meireles AJA, Silva EV, Thiers PRL (2006) Os campos de dunas móveis: fundamentos dinâmicos para um modelo integrado de planejamento e gestão da zona costeira. GEOUSP 20:101–119

    Article  Google Scholar 

  • Morais JO, Freire GSS, Pinheiro LS, Souza MJN, Carvalho AM, Pessoa PRS, Oliveira SHM (2006) Ceará. In: Muehe D (ed) Erosão e progradação no litoral brasileiro. MMA, Brasília, pp 131–154

    Google Scholar 

  • Morse JW, Wang Q (1997) Pyrite formation under conditions approximating those in anoxic sediments: II. Influence of precursor iron minerals and organic matter. Mar Chem 57(3–4):187–193. doi:10.1016/S0304-4203(97)00050-9

    Article  Google Scholar 

  • Munsell Color (2000) Munsell soil color chart. Munsell Color, Grand Rapids

    Google Scholar 

  • Nellemann C, Corcoran E, Duarte CM, Valdés L, De Young C, Fonseca L, Grimsditch G (eds) (2009) Blue carbon. A rapid response assessment. United Nations Environment Programme, GRID-Arendal, Norway

    Google Scholar 

  • Nóbrega GN, Ferreira TO, Romero RE, Marques AG, Otero XL (2013) Iron and sulfur geochemistry in semi-arid mangrove soils (Ceará, Brazil) in relation to seasonal changes and shrimp farming effluents. Environ Monit Assess 185:7393–7407. doi:10.1007/s10661-013-3108-4

    Article  Google Scholar 

  • Otero XL, Macías F (2010) Biogeochemistry and pedogenetic processes in saltmarshes and mangrove systems tidal soils and sediments. Nova Science Publishers, New York

    Google Scholar 

  • Otero XL, Ferreira TO, Huerta-Díaz MA, Partiti CSM, Souza V Jr, Vidal-Torrado P, Macías F (2009) Geochemistry of iron and manganese in soils and sediments of a mangrove system, Island of Pai Matos (Cananéia - SP, Brazil). Geoderma 148:318–335. doi:10.1016/j.geoderma.2008.10.016

    Article  Google Scholar 

  • Perillo GME, Minkoff DR, Piccolo MC (2005) Novel mechanism of stream formation in coastal wetlands by crab–fish–groundwater interaction. Geo-Mar Lett 25:214–220. doi:10.1007/s00367-005-0209-2

    Article  Google Scholar 

  • Quaggio JA, van Raij B, Malavolta E (1985) Alternative use of the SMP-buffer solution to determine lime requirement of soils. Commun Soil Sci Plant Anal 16:245–260. doi:10.1080/00103628509367600

    Article  Google Scholar 

  • Raiswell R, Canfield DE (1998) Sources of iron for pyrite formation in marine sediments. Am J Sci 298(3):219–245

    Article  Google Scholar 

  • Raiswell R, Buckley F, Berner RA, Anderson TF (1988) Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation. J Sediment Res 58(5):812–819. doi:10.1306/212F8E72-2B24-11D7-8648000102C1865D

    Google Scholar 

  • Rhoades JD (1982) Soluble salts. In: Page AL et al (eds) Methods of soil analysis. Part 2. Chemical and microbiological properties. SSSA, Madison, pp 167–179

    Google Scholar 

  • Rhoades JD (1996) Salinity: electrical conductivity and total dissolved solids. In: Sparks DL et al (eds) Methods of soil analysis. Part 3. Chemical methods. SSSA, Madison, pp 417–435

    Google Scholar 

  • Ribeiro MATSB, Knoppers BA, Carreira RS (2011) Sources and distribution of sedimentary organic matter in the Mundaú-Manguaba estuarine-lagoon system (State of Alagoas) using sterols and alcohols as indicators. Quim Nov. 34(7):1111–1118. doi:10.1590/S0100-40422011000700002

  • Rickard D, Morse JW (2005) Acid volatile sulfide (AVS). Mar Chem 97:141–197. doi:10.1016/j.marchem.2005.08.004

    Article  Google Scholar 

  • Roychoudhury AN, Kostka JE, Van Cappellen P (2003) Pyritization: a palaeoenvironmental and redox proxy reevaluated. Estuarine Coastal Shelf Sci 57(5):1183–1193. doi:10.1016/S0272-7714(03)00058-1

    Article  Google Scholar 

  • Santos JDO (2011) Fragilidade e riscos socioambientais em Fortaleza-CE: contribuições ao ordenamento territorial. Dissertation, University of São Paulo, Brazil

  • Schaeffer-Novelli Y, Cintrón-Molero G, Adaime RR, Camargo TM (1990) Variability of mangrove ecosystems along the Brazilian coast. Estuaries 13(2):204–218

    Article  Google Scholar 

  • Schippers A, Jørgensen B (2002) Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments. Geochim Cosmochim Acta 66(1):85–92. doi:10.1016/S0016-7037(01)00745-1

    Article  Google Scholar 

  • Schoeneberger PJ, Wysocki DA, Benham EC, Soil Survey Staff (2012) Field book for describing and sampling soils. Natural Resources Conservation Service, National Soil Survey Center, Lincoln

    Google Scholar 

  • Silliman BR (2014) Salt marshes. Curr Biol 24(9):348–350

    Article  Google Scholar 

  • Suits NS, Wilkin RT (1998) Pyrite formation in the water column and sediments of a meromictic lake. Geology 26(12):1099–1102

    Article  Google Scholar 

  • Sumner ME, Miller WP (1996) Cation exchange capacity and exchange coefficients. In: Sparks DL et al (eds) Methods of soil analysis. Part 3. Chemical methods. SSSA, Madison, pp 1201–1229

    Google Scholar 

  • Szczygielski A, Stattegger K, Schwarzer K, da Silva AGA, Vital H, Koenig J (2015) Evolution of the Parnaíba Delta (NE Brazil) during the late Holocene. Geo-Mar Lett 35:105–117. doi:10.1007/s00367-014-0395-x

    Article  Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851. doi:10.1021/ac50043a017

    Article  Google Scholar 

  • Wilkin RT, Barnes HL, Brantley SL (1996) The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochim Cosmochim Acta 60(20):3897–3912. doi:10.1016/0016-7037(96)00209-8

    Article  Google Scholar 

  • Wilkin RT, Arthur MA, Dean WE (1997) History of water-column anoxia in the Black Sea indicated by pyrite framboid size distribution. Earth Planet Sci Lett 148(3-4):517–525. doi:10.1016/S0012-821X(97)00053-8

    Article  Google Scholar 

  • Yeomans JC, Bremner JM (1988) A rapid and precise method for routine determination of organic carbon in soil. Commun Soil Sci Plant Anal 19:1467–1476. doi:10.1080/00103628809368027

    Article  Google Scholar 

  • Zink KG, Furtado ALS, Casper P, Schwark L (2004) Organic matter composition in the sediment of three Brazilian coastal lagoons – district of Macaé, Rio de Janeiro (Brazil). An Acad Bras Ciênc 76(1):29–47. doi:10.1590/S0001-37652004000100004

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the São Paulo Research Foundation (FAPESP), the Conselleria de Innovación e Industrial Xunta de Galicia (Spain, PGIDIT08MDS036000PR), and the PROMETEO governmental program (Ecuador). Also acknowledged are constructive assessments by two anonymous reviewers and the journal editors.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago O. Ferreira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, T.O., Nóbrega, G.N., Albuquerque, A.G.B.M. et al. Pyrite as a proxy for the identification of former coastal lagoons in semiarid NE Brazil. Geo-Mar Lett 35, 355–366 (2015). https://doi.org/10.1007/s00367-015-0412-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-015-0412-8

Keywords

Navigation