Skip to main content

In situ observations of suspended particulate matter plumes at an offshore wind farm, southern North Sea

Abstract

Suspended particulate matter (SPM) plumes associated with the monopile foundations of the Belgian offshore wind farm (OWF) Belwind I were acoustically profiled by means of a Doppler current profiler (ADCP). Together with the analysis of a bottom lander dataset of optical and acoustic backscatter sensors (OBSs and ADPs respectively), the spatiotemporal SPM plume dynamics were inferred. The fieldwork comprised (1) near-bed measurements of hydrodynamics and SPM concentrations in the direct vicinity of the wind turbines, by means of a bottom lander over a spring–neap cycle in May 2010; this dataset represents a typically tide-driven situation because there was no significant meteorological forcing during the measurement period; (2) additional vessel-based measurements conducted in May 2013 to capture the SPM plumes inside and outside the OWF over part of a tidal cycle. Both in situ datasets revealed that the SPM plumes were generated at the turbine piles, consistent with aerial and space-borne imagery. The SPM plumes are well aligned with the tidal current direction in the wake of the monopiles, concentrations being estimated to reach up to 5 times that of the background concentration of about 3 mg/l. It is suggested that the epifaunal communities colonizing the monopile surface and the protective rock collar at the base play a key role as source of the suspended matter recorded in the plumes. The organisms filter and trap fine SPM from the water column, resulting in predominant accumulation of SPM, including detritus and (pseudo-) faeces, at the base of the piles. When tidal currents exceed a certain velocity, fine particles in the near-bed fluff layer are re-suspended and transported downstream in the wake of the piles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Belwind (2012) Scour protection. Belwind Offshore Energy technical report

  • Bian C, Mao X, Jiang W, Gu Y (2015) ADV-based estimates of sediment settling velocity on the shelf of the Yellow and East China seas: evidence of marked seasonal and intra-tidal variations. Geo-Mar Lett 35:53–60. doi:10.1007/s00367-014-0386-y

    Article  Google Scholar 

  • Bolam SG, Rees HL, Somerfield P, Smith R, Clarke KR, Warwick RM, Atkins M, Garnacho E (2006) Ecological consequences of dredged material disposal in the marine environment: a holistic assessment of activities around the England and Wales coastline. Mar Pollut Bull 52:415–426. doi:10.1016/ j.marpolbul.2005.09.028

    Article  Google Scholar 

  • Borst W, Vellinga T, Van Tongeren O (2013) The monitoring programme for the Maasvlakte 2 construction at the port of Rotterdam Part II. Terra Aqua 130:20–32

    Google Scholar 

  • Chen H-H, Yang R-Y, Hwung H-H (2014) Study of hard and soft countermeasures for scour protection of the jacket-type offshore wind turbine foundation. J Mar Sci Eng 2:551–567. doi:10.3390/jmse2030551

    Article  Google Scholar 

  • Coates D, Deschutter Y, Vincx M, Vanaverbeke J (2014) Enrichment and shifts in macrobenthic assemblages in an offshore wind farm area in the Belgian part of the North Sea. Mar Environ Res 95:1–12. doi:10.1016/j.marenvres.2013.12.008

    Article  Google Scholar 

  • Degraer S, Verfaillie E, Willems W, Adriaens E, Vincx M, Van Lancker V (2008) Habitat suitability modelling as a mapping tool for macrobenthic communities: an example from the Belgian part of the North Sea. Cont Shelf Res 28:369–379. doi:10.1016/j.csr.2007.09.001

    Article  Google Scholar 

  • Degraer S, Kerckhof F, Reubens J, Vanermen N, Demesel I, Rumes B, Stienen E, Vandendriessche S, Vincx M (2013) Not necessarily all gold that shines: appropriate context setting needed! In: Degraer S, Brabant R, Rumes B (eds) Environmental impacts of offshore wind farms in the Belgian part of the North Sea: learning from the past to optimise future monitoring programmes. Royal Belgian Institute of Natural Sciences, pp 174–181

  • Deines KL (1999) Backscatter estimation using broadband acoustic Doppler current profilers. In: Proc IEEE 6th Working Conf Current Measurements, pp 249–253

  • De Mesel I, Kerckhof F, Rumes B, Norro A, Houziaux JS, Degraer S (2013) Fouling communities on the foundations of wind turbines and the surrounding scour protection. In: Degraer S, Brabant R, Rumes B (eds) Environmental impacts of offshore wind farms in the Belgian part of the North Sea: learning from the past to optimise future monitoring programmes. Royal Belgian Institute of Natural Sciences, pp 123–137

  • Den Boon JH, Sutherland J, Whitehouse R, Soulsby R, Stam CJM, Verhoeven K, Høgedal M, Hald T (2004) Scour behaviour and scour protection for monopile foundations of offshore wind turbines. In: Proc European Wind Energy Conference, European Wind Energy Association, p 14

  • De Vos L, De Rouck JD, Troch P, Frigaard P (2011) Empirical design of scour protections around monopile foundations: Part 1: Static approach. Coast Eng 58:540–553. doi:10.1016/j.coastaleng.2011.02.001

    Article  Google Scholar 

  • Downing J (2006) Twenty-five years with OBS sensors: the good, the bad, and the ugly. Cont Shelf Res 26:2299–2318. doi:10.1016/j.csr.2006.07.018

    Article  Google Scholar 

  • Dumbauld BR, Ruesink JL, Rumrill SS (2009) The ecological role of bivalve shellfish aquaculture in the estuarine environment: a review with application to oyster and clam culture in West Coast (USA) estuaries. Aquaculture 290:196–223. doi:10.1016/j.aquaculture.2009.02.033

    Article  Google Scholar 

  • European Commission (2010) Commission Decision of 1 September 2010 on criteria and methodological standards on good environmental status of marine waters (notified under document C(2010) 5956)(2010/477/EU). Official Journal of the European Union L232:12–24

    Google Scholar 

  • EWEA (2013) The European offshore wind industry - Key trends and statistics 2012. European Wind Energy Association

  • Fettweis M, Francken F, Pison V, Van den Eynde D (2006) Suspended particulate matter dynamics and aggregate sizes in a high turbidity area. Mar Geol 235:63–74. doi:10.1016/j.margeo.2006.10.005

    Article  Google Scholar 

  • Fettweis M, Baeye M, Francken F, Lauwaert B, Van den Eynde D, Van Lancker V, Martens C, Michielsen T (2011) Monitoring the effects of disposal of fine sediments from maintenance dredging on suspended particulate matter concentration in the Belgian nearshore area (southern North Sea). Mar Pollut Bull 62:258–269. doi:10.1016/j.marpolbul.2010.11.002

    Article  Google Scholar 

  • Fettweis M, Monbaliu J, Baeye M, Nechad B, Van den Eynde D (2012a) Weather and climate induced spatial variability of surface suspended particulate matter concentration in the North Sea and the English Channel. Methods Oceanogr 3:25–39. doi:10.1016/j.mio.2012.11.001

    Article  Google Scholar 

  • Fettweis M, Baeye M, Lee BJ, Chen P, Yu JCS (2012b) Hydro-meteorological influences and multimodal suspended particle size distributions in the Belgian nearshore area (southern North Sea). Geo-Mar Lett 32:123–137. doi:10.1007/s00367-011-0266-7

    Article  Google Scholar 

  • Fettweis M, Baeye M, Van der Zande D, Van den Eynde D, Lee BJ (2014) Seasonality of floc strength in the southern North Sea. J Geophys Res 118:1911–1926. doi:10.1002/2013JC009750

    Article  Google Scholar 

  • Forrest BM, Keeley NB, Hopkins GA, Webb SC, Clement DM (2009) Bivalve aquaculture in estuaries: review and synthesis of oyster cultivation effects. Aquaculture 298:1–15. doi:10.1016/j.aquaculture.2009.09.032

    Article  Google Scholar 

  • Fredette TJ, French GT (2004) Understanding the physical and environmental consequences of dredged material disposal: history in New England and current perspectives. Mar Pollut Bull 49:93–102. doi:10.1016/j.marpolbul.2004.01.014

    Article  Google Scholar 

  • Fugate DC, Friedrichs CT (2002) Determining concentration and fall velocity of estuarine particle populations using ADV, OBS and LISST. Cont Shelf Res 22:1867–1886

    Article  Google Scholar 

  • Gartner J (2004) Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California. Mar Geol 211:169–187. doi:10.1016/j.margeo.2004.07.001

    Article  Google Scholar 

  • Giles H, Broekhuizen N, Bryan KR, Pilditch CA (2009) Modelling the dispersal of biodeposits from mussel farms: the importance of simulating biodeposit erosion and decay. Aquaculture 291:168–178. doi:10.1016/j.aquaculture.2009.03.010

    Article  Google Scholar 

  • Ha HK, Hsu WY, Maa JY, Shao YY, Holland CW (2009) Using ADV backscatter strength for measuring suspended cohesive sediment concentration. Cont Shelf Res 29:1310–1316. doi:10.1016/j.csr.2009.03.001

    Article  Google Scholar 

  • Høgedal M, Hald T (2005) Scour assessment and design for scour for monopile foundations for offshore wind turbines. In: Proc Copenhagen Offshore Wind Conf 2005

  • Holdaway GP, Thorne PD, Flatt D, Jones SE, Prandle D (1999) Comparison between ADCP and transmissometer measurements of suspended sediment concentration. Cont Shelf Res 19:421–441

    Article  Google Scholar 

  • Jourdin F, Tessier C, Le Hir P, Verney R, Lunven M, Loyer S, Lusven A, Filipot J-F, Lepesqueur J (2014) Dual-frequency ADCPs measuring turbidity. Geo-Mar Lett 34:381–397. doi:10.1007/s00367-014-0366-2

    Google Scholar 

  • Kerckhof F, Rumes B, Norro A, Houziaux J-S, Degraer S (2012) A comparison of the first stages of biofouling in two offshore wind farms in the Belgian part of the North Sea. In: Degraer S, Brabant R, Rumes B (eds) Offshore wind farms in the Belgian part of the North Sea: heading for an understanding of environmental impacts. Royal Belgian Institute of Natural Sciences, pp 17–39

  • Kim YH, Gutierrez B, Nelson T, Dumars A, Maza M, Perales H, Voulgaris G (2004) Using the acoustic Doppler current profiler (ADCP) to estimate suspended sediment concentration. Technical Report CPSD #04-01, Department of Geological Sciences, University of South Carolina, SC

  • Krone R, Gutowa L, Joschko TJ, Schröder A (2013) Epifauna dynamics at an offshore foundation - Implications of future wind power farming in the North Sea. Mar Environ Res 85:1–12. doi:10.1016/j.marenvres.2012.12.004

    Article  Google Scholar 

  • Lacroix G, Ruddick K, Ozer J, Lancelot C (2004) Modelling the impact of the Scheldt and Rhine/Meuse plumes on the salinity distribution in Belgian waters (southern North Sea). J Sea Res 52:149–163. doi:10.1016/j.seares.2004.01.003

    Article  Google Scholar 

  • Luyten PJ (2011) COHERENS — A Coupled Hydrodynamical - Ecological Model for Regional and Shelf Seas: User Documentation Version 2.0. RBINS MUMM Report, Royal Belgian Institute of Natural Sciences

  • Maar M, Bolding K, Petersen JK, Hansen JL, Timmermann K (2009) Local effects of blue mussels around turbine foundations in an ecosystem model of Nysted off-shore wind farm, Denmark. J Sea Res 62:159–174. doi:10.1016/j.seares.2009.01.008

    Article  Google Scholar 

  • Manning AJ, Van Kessel T, Melotte J, Sas M, Winterwerp H, Pidduck EL (2011) On the consequence of a new tidal dock on the sedimentation regime in the Antwerpen area of the Lower Sea Scheldt. Cont Shelf Res 31:S150–S164. doi:10.1016/j.csr.2010.10.008

    Article  Google Scholar 

  • McKindsey CW, Lecuona M, Huot M, Weise AM (2009) Biodeposit production and benthic loading by farmed mussels and associated tunicate epifauna in Prince Edward Island. Aquaculture 295:44–51. doi:10.1016/j.aquaculture.2009.06.022

    Article  Google Scholar 

  • McKindsey CW, Archambault P, Callier MD, Olivier F (2011) Influence of suspended and off-bottom mussel culture on the sea bottom and benthic habitats: a review. Can J Zool 89:622–646. doi:10.1139/z11-037

    Article  Google Scholar 

  • Medwin H, Clay CS (1998) Fundamentals of acoustical oceanography. Academic Press, San Diego, CA

    Google Scholar 

  • Mostafa YES (2012) Environmental impacts of dredging and land reclamation at Abu Qir Bay, Egypt. Ain Shams Eng J 3:1–15. doi:10.1016/j.asej.2011.12.004

    Article  Google Scholar 

  • Nauw JJ, Merckelbach LM, Ridderinkhof H, van Aken HM (2014) Long-term ferry-based observations of the suspended sediment fluxes through the Marsdiep inlet using acoustic Doppler current profilers. J Sea Res 87:17–29. doi:10.1016/j.seares.2013.11.013

    Article  Google Scholar 

  • Nielsen AW, Liu X, Sumer BM, Fredsøe J (2013) Flow and bed shear stresses in scour protections around a pile in a current. Coast Eng 72:20–38. doi:10.1016/j.coastaleng.2012.09.001

    Article  Google Scholar 

  • Orpin AR, Ridd PV, Thomas S, Anthony KRN, Marshall P, Oliver J (2004) Natural turbidity variability and weather forecasts in risk management of anthropogenic sediment discharge near sensitive environments. Mar Pollut Bull 49:602–612. doi:10.1016/j.marpolbul.2004.03.020

    Article  Google Scholar 

  • Orvain F, Hir PL, Sauriau PG (2003) A model of fluff layer erosion and subsequent bed erosion in the presence of the bioturbator, Hydrobia ulvae. J Mar Res 61:821–849

    Article  Google Scholar 

  • OSPAR (2004) Problems and benefits associated with the development of offshore wind-farms. Biodiversity Series, OSPAR Commission, London

    Google Scholar 

  • Proudman J, Doodson AT (1924) The principal constituent of the tides of the North Sea. Philos Trans R Soc A 224:185–219

    Article  Google Scholar 

  • Punt MJ, Groeneveld RA, van Ierland EC, Stel JH (2009) Spatial planning of offshore wind farms: a windfall to marine environmental protection? J Ecol Econ 69:93–103. doi:10.1016/j.ecolecon.2009.07.013

    Article  Google Scholar 

  • Tessier C (2006) Caractérisation et dynamique des turbidités en zone côtière: l’exemple de la région marine Bretagne Sud. PhD Thesis no 3307, Université de Bordeaux, France

  • Thorne PD, Hanes DM (2002) A review of acoustic measurement of small-scale sediment processes. Cont Shelf Res 22:603–632

    Article  Google Scholar 

  • Thorne PD, Vincent CE, Hardcastle PJ, Rehman S, Pearson N (1991) Measuring suspended sediment concentrations using acoustic backscatter devices. Mar Geol 98:7–16

    Article  Google Scholar 

  • Urick RJ (1983) Principles of underwater sound, 3rd edn. McGraw-Hill, Columbus, OH

    Google Scholar 

  • Van den Eynde D, Baeye M, Brabant R, Fettweis M, Francken F, Haerens P, Mathys M, Sas M, Van Lancker V (2013) All quiet on the sea bottom front? Lessons from the morphodynamic monitoring. In: Degraer S, Brabant R, Rumes B (eds) Environmental impacts of offshore wind farms in the Belgian part of the North Sea: learning from the past to optimise future monitoring programmes. Royal Belgian Institute of Natural Sciences, Brussels, pp 35–47

    Google Scholar 

  • Vanhellemont Q, Ruddick K (2014) Turbid wakes associated with offshore wind turbines observed with Landsat 8. Remote Sens Environ 145:105–115. doi:10.1016/j.rse.2014.01.009

    Article  Google Scholar 

  • Van Lancker V (2009) SediCURVE@SEA: a multiparameter sediment database, in support of environmental assessments at sea. In: QUantification of Erosion/Sedimentation patterns to Trace the natural versus anthropogenic sediment dynamics (QUEST4D). Final Report Phase 1, Belgian Science Policy, pp 120–124. http://www.belspo.be/belspo/ssd/science/Reports/QUEST4D%20FinRep%20PH%201.DEF.pdf

  • Voulgaris G, Meyers ST (2004) Temporal variability of hydrodynamics, sediment concentration and sediment settling velocity in a tidal creek. Cont Shelf Res 24:1659–1683. doi:10.1016/j.csr.2004.05.006

    Article  Google Scholar 

  • Ware S, Bolam SG, Rees HL (2010) Impact and recovery associated with the deposition of capital dredging at UK disposal sites: lessons for future licensing and monitoring. Mar Pollut Bull 60:79–90. doi:10.1016/j.marpolbul.2009.08.031

    Article  Google Scholar 

  • Whitehouse RJS, Harris JM, Sutherland J, Rees J (2011) The nature of scour development and scour protection at offshore windfarm foundations. Mar Pollut Bull 62:73–88. doi:10.1016/j.marpolbul.2010.09.007

    Article  Google Scholar 

  • Widdows J, Navarro JM (2007) Influence of current speed on clearance rate, algal cell depletion in the water column and resuspension of biodeposits of cockles (Cerastoderma edule). J Exp Mar Biol Ecol 343:44–51. doi:10.1016/j.jembe.2006.11.011

    Article  Google Scholar 

  • Ysebaert T, Hart M, Herman PM (2009) Impacts of bottom and suspended cultures of mussels Mytilus spp. on the surrounding sedimentary environment and macrobenthic biodiversity. Helgoland Mar Res 63:59–74. doi:10.1007/s10152-008-0136-5

    Article  Google Scholar 

Download references

Acknowledgements

Ship time aboard RV Belgica was provided by BELSPO and RBINS–Operational Directorate Natural Environment (OD Nature). We thank L. Naudts, J. Backers and K. Hindryckx for all technical aspects of the bottom lander used for this study, F. Francken for pre-processing and archiving the measurements, as well as Dries Van den Eynde, Francis Kerckhof, Steven Degraer and Alain Norro for fruitful discussions. Two anonymous reviewers are thanked for their thorough reading of the manuscript and their helpful comments.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Baeye.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baeye, M., Fettweis, M. In situ observations of suspended particulate matter plumes at an offshore wind farm, southern North Sea. Geo-Mar Lett 35, 247–255 (2015). https://doi.org/10.1007/s00367-015-0404-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-015-0404-8

Keywords

  • Wind Turbine
  • Suspended Particulate Matter
  • Spring Tide
  • Receive Signal Strength Indicator
  • Acoustic Doppler Current Profiler