Skip to main content
Log in

Disseminated sulphides in basalts from the northern Central Indian Ridge: implications on late-stage hydrothermal activity

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

This study examined the mineralogy and mineral chemistry of disseminated sulphides (mainly chalcopyrite-pyrite) in partly altered basalts from the northern Central Indian Ridge, Indian Ocean in order to understand the role of hydrothermal alterations and infer possible sulphide formation history. Pyrite and chalcopyrite are dominant sulphide minerals and generally associated with the oxide phases including magnetite and often ilmenite. Close association of sulphide and oxide minerals suggests that they are paragenetically related. Sulphides also occur as late impregnated veins cutting through the basaltic hosts. The chemical compositions of pyrite (avg. Fe 46.3 wt%, S 53.7 wt%) and chalcopyrite (avg. Cu 34.4 wt%, Fe 30.7 wt%, S 34.7 wt%) are almost uniform, while the secondary ilmenite often shows MnO enrichment (up to 3.0–3.4 wt%). The associated altered minerals typically resemble the greenschist facies mineral assemblages—e.g. chlorite±epidote. Evidence of albitisation and silicification suggests low-temperature hydrothermal alteration processes. This is supported by the bulk Au content (up to 60 ppb) of host-altered basalts with pyrite mineralisation. Au is usually associated with late-stage pyrites and thus related with low-temperature hydrothermal activity. Close to the dredge location, tectonic activity around the Vityaz megamullion might have promoted hydrothermal circulation and subsequent alteration of the mineral constituents in basalts, eventually inducing the formation of late-stage disseminated sulphide minerals in these rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bach W, Peucker-Ehrenbrink B, Hart SR, Blusztajn JS (2003) Geochemistry of hydrothermally altered oceanic crust: DSDP/ODP Hole 504B—Implications for seawater–crust exchange budgets and Sr- and Pb-isotopic evolution of the mantle. Geochem Geophys Geosyst 4(3):29–35

    Article  Google Scholar 

  • Baedecker PA (ed) (1987) Methods for geochemical analysis. US Geol Surv Bull 1770

  • Baker ET, German CR (2004) On the global distribution of hydrothermal vent fields. In: German CR, Lin J, Parson LM (eds) Mid-ocean ridges: hydrothermal interactions between the lithosphere and oceans. Am Geophys Union, Geophys Monogr 148:245–266. doi: 10.1002/9781118665879

  • Balaram V, Gnaneshwara Rao T, Anjaiah KV (1999) International proficiency tests for analytical geochemistry laboratories: an assessment of accuracy and precision in routine geochemical analyses. J Geol Soc Ind 53:417–423

    Google Scholar 

  • Banerjee R, Ray D (2003) Metallogenesis along the Indian Ocean Ridge System. Curr Sci 85(3):321–327

    Google Scholar 

  • Batuev BN, Krotov AG, Markov VF, Cherkashev GA, Krasnov SG, Lisitsyn YD (1994) Massive sulfide deposits discovered and sampled at 14°45′N, Mid-Atlantic Ridge. BRIDGE Newslett 6:6–10

    Google Scholar 

  • Beltenev V, Nescheretov A, Shilov V, Ivanov V, Shagin A, Stepanova T, Cherkashev G, Batuev B, Samovarov M, Rozhdestvenskaya I, Andreeva I, Fedorov I, Davydov M, Romanova L, Rumyantsev A, Zaharov V, Luneva N, Artem’eva O (2003) New discoveries at 12°58′N, 44°52′W MAR: Professor Logatchev-22 cruise, initial results. InterRidge Newslett 12(1):13–14

    Google Scholar 

  • Beltenev V, Ivanov V, Rozhdestvenskaya I, Cherkashov G, Stepanova T, Shilov V, Pertsev A, Davydov M, Egorov I, Melekestseva I, Narkevsky E, Ignatov V (2007) A new hydrothermal field at 13°30′N on the Mid-Atlantic Ridge. InterRidge Newslett 16:9–10

    Google Scholar 

  • Drolia RK, DeMets C (2005) Deformation in the diffuse India-Capricorn-Somalia triple junction from a multibeam and magnetic survey of the northern Central Indian ridge, 3°S-10°S. Geochem Geophys Geosyst 6(9), Q09009. doi:10.1029/2005GC000950

    Article  Google Scholar 

  • Drolia RK, Iyer SD, Chakraborty B, Kodagali V, Ray D, Misra S, Andrade R, Sarma KVLNS, Rajasekhar RP, Mukhopadhyay R (2003) The Northern Central Indian Ridge: geology and tectonics of fracture zones-dominated spreading ridge segments. Curr Sci 85:290–298

    Google Scholar 

  • Escartín J, Smith DK, Cann J, Schouten H, Langmuir CH, Escrig S (2008) Central role of detachment faults in accretion of slow‐spreading oceanic lithosphere. Nature 455:790–794. doi:10.1038/nature07333

    Article  Google Scholar 

  • Fouquet Y, von Stackelberg U, Charlou JL, Erzinger J, Herzig PM, Mühe R, Wiedicke M (1993) Metallogenesis in back-arc environments: the Lau Basin example. Econ Geol SI 88:2154–2181

    Article  Google Scholar 

  • Fouquet Y, Cambon P, Etoubleau J, Charlou JL, Ondréas H, Barriga F, Cherkashov G, Semkova T, Poroshina I, Bohn M, Donval JP, Henry K, Murphy P, Rouxel O (2010) Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: a new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulphide deposit. In: Rona PA, Devey CW, Dyment J, Murton B (eds) Diversity of hydrothermal systems on slow spreading ocean ridges. AGU Geophysical Monogr 188:321–367

  • Fryer BJ, Greenhough JD (1992) Evidence for mantle heterogeneity from platinum group element abundances in Indian Ocean basalts. Can J Earth Sci 29:2329–2340

    Article  Google Scholar 

  • Gamo T, Chiba H, Yamanaka T, Okudaira T, Hashimoto J, Tsuchida S, Ishibashi J, Kataoka S, Tsunogai U, Okamura K, Sano Y, Shinjo R (2001) Chemical characteristics of newly discovered black smoker fluids and associated hydrothermal plumes at the Rodriguez Triple Junction, Central Indian Ridge. Earth Planet Sci Lett 193:371–379. doi:10.1016/S0012-821X(01)00511-8

    Article  Google Scholar 

  • German CR, Klinkhammer G, Rudnicki MD (1996) The Rainbow hydrothermal plume, 36°15′N, MAR. Geophys Res Lett 23(21):2979–2982

    Article  Google Scholar 

  • Halbach P, Blum N, Münch U, Plüger W, Garbe-Schönberg D, Zimmer M (1998) Formation and decay of a modern massive sulfide deposit in the Indian Ocean. Min Deposita 33:302–309

    Article  Google Scholar 

  • Hannington MD, Scott SD (1988) Mineralogy and geochemistry of a hydrothermal silica-sulfide-sulfate spire in the caldera of Axial Seamount, Juan de Fuca Ridge. Can Mineral 26:603–625

    Google Scholar 

  • Hannington MD, Scott SD (1989) Gold mineralization in volcanogenic massive sulphides: implications of data from active hydrothermal vents on the modern sea floor. Econ Geol Monogr 6:491–507

    Google Scholar 

  • Hannington MD, Peter JM, Scott SD (1986) Gold in sea-floor polymetallic sulfide deposits. Econ Geol 81:1867–1883

    Article  Google Scholar 

  • Hannington MD, Herzig PM, Scott D, Thompson G, Rona PA (1991) Comparative mineralogy and geochemistry of gold bearing sulfide deposits on the mid-ocean ridges. Mar Geol 101:217–248

    Article  Google Scholar 

  • Harvey-Kelly FEL, Jonasson IR, Franklin JM, Embley RW (1988) Sulphide deposits of axial seamount: mineralogy and chemistry. Am Geophys Union Trans 69:1499–1500

    Google Scholar 

  • Hashimoto J, Ohta S, Gamo T, Chiba H, Yamaguchi T, Tsuchida S, Okudaira T, Watabe H, Yamanaka T, Kitazawa M (2001) First hydrothermal vent communities from the Indian Ocean discovered. Zool Sci 18:717–721

    Article  Google Scholar 

  • Hekinian R, Fouquet Y (1985) Volcanism and metallogenesis of axial and off-axial structures on the East Pacific Rise near 13 degrees N. Econ Geol 80:221–249

    Article  Google Scholar 

  • Herzig PM, Hannington MD (2000) Polymetallic massive sulphides and gold mineralisaton at Mid-Ocean ridges and subduction-related environments. In: Cronan DS (ed) Handbook of Marine Mineral Deposits. CRC Marine Science Series, Florida, pp 347–368

    Google Scholar 

  • Herzig PM, Plueger WL (1988) Exploration for hydrothermal activity near the Rodriguez triple junction, Indian Ocean. Can Mineral 26:721–736

    Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314

    Article  Google Scholar 

  • Ildefonse B, Blackman DK, John BE, O’Hara Y, Miller DJ, Macleod CJ, Integrated Drilling Program Expeditions 304/305 Science Party (2007) Oceanic core complexes and crustal accretion at slow spreading ridges. Geology 35:623–626

    Article  Google Scholar 

  • Iyer SD, Banerjee R (1993) Mineral chemistry of Carlsberg Ridge basalts at 3°35′N–3°41′N. Geo-Mar Lett 13:153–158. doi:10.1007/BF01593188

    Article  Google Scholar 

  • Kamesh Raju KA, Samudrala K, Drolia RK, Amarnath D, Ramachandran R, Mudholkar A (2012) Segmentation and morphology of the Central Indian Ridge between 3°S and 11°S, Indian Ocean. Tectonophysics 554–557:114–126

    Article  Google Scholar 

  • Marks N, Schiffman P, Zierenberg RA, Franzson H, Fridleifsson GÓ (2010) Hydrothermal alteration in the Reykjanes geothermal system: insights from Iceland deep drilling program well RN-17. J Volcanol Geotherm Res 189:172–190

    Article  Google Scholar 

  • Marques AFA, Barriga FJAS, Scott SD (2007) Sulphide mineralization in an ultramafic-rock hosted seafloor hydrothermal system: from serpentinisation to the formation of Cu-Zn-(Co)-rich massive sulphides. Mar Geol 245:20–39

    Article  Google Scholar 

  • McCaig AM, Cliff RA, Escartin J, Fallick AE, MacLeod CJ (2007) Oceanic detachment faults focus very large volumes of black smoker fluids. Geology 35:935–938

    Article  Google Scholar 

  • McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosyst 2:1021. doi:10.1029/2000GC000109

    Article  Google Scholar 

  • Melchert B, Devey CW, German CR, Lackschewitz KS, Seifert R, Walter M, Mertens C, Yoerger DR, Baker ET, Paulick H, Nakamura K (2008) First evidence for high temperature off-axis venting of deep crustal/ mantle heat: the Nibelungen hydrothermal field, southern Mid-Atlantic Ridge. Earth Planet Sci Lett 275:61–69

    Article  Google Scholar 

  • Morishita T, Hara K, Nakamura K, Sawaguchi T, Tanura A, Arai S, Okino K, Takai K, Kumagai H (2009) Igneous, alteration and exhumation processes recorded in abyssal peridotites and related fault rocks from an oceanic core complex along the Central Indian Ridge. J Petrol 50(7):1299–1325. doi:10.1093/petrology/egp025

    Article  Google Scholar 

  • Münch U, Blum N, Halbach P (1999) Mineralogical and geochemical features of sulfide chimneys from the MESO zone, Central Indian Ridge. Chem Geol 155:29–44

    Article  Google Scholar 

  • Murphy PJ, Meyer G (1998) A gold–copper association in ultramafic-hosted hydrothermal sulfides from the Mid-Atlantic Ridge. Econ Geol 93:1076–1083

    Article  Google Scholar 

  • Nakamura K, Watanabe H, Miyazaki J, Takai K, Kawagucci S, Noguchi T, Nemoto S, Watsuji T, Matsuzaki T, Shibuya T, Okamura K, Mochizuki M, Orihashi Y, Ura T, Asada A, Marie D, Koonjul M, Singh M, Beedessee G, Bhikajee M, Tamaki K (2012) Discovery of new hydrothermal activity and chemosynthetic fauna on the Central India Ridge at 18°–20°S. PLoS ONE 7(3):e32965. doi:10.1371/journal.pone.0032965

    Article  Google Scholar 

  • Pasava J, Vymazalova A, Petersen S (2007) PGE fractionation in seafloor hydrothermal systems: examples from mafic- and ultramafic-hosted hydrothermal fields at the slow spreading Mid-Atlantic Ridge. Min Deposita 42:423–431

    Article  Google Scholar 

  • Petersen S, Kuhn K, Kuhn T, Augustin N, Hékinian R, Franz L, Borowski C (2009) The geological setting of the ultramafic-hosted Logatchev hydrothermal field (14°45′N, Mid-Atlantic Ridge) and its influence on massive sulfide formation. Lithos 112:40–56

    Article  Google Scholar 

  • Plüger WL, Herzig PM, Becker KP, Deissmann G, Schöps D, Lange J, Jenisch A, Ladage S, Richnow HH, Schulze T, Michaelis W (1990) Discovery of hydrothermal fields at the Central Indian Ridge. Mar Mining 9:73–86

    Google Scholar 

  • Ray D, Banerjee R, Iyer SD, Mukhopadhyay S (2009a) Evidences for seawater-rock hydrothermal interaction in the serpentinites from Northern Central Indian Ridge. Curr Sci 97:1239–1243

    Google Scholar 

  • Ray D, Mevel C, Banerjee R (2009b) Implications on hydrothermal alteration of gabbros from Northern Central Indian Ridge. J Earth Syst Sci 118(6):659–676

    Article  Google Scholar 

  • Ray D, Misra S, Banerjee R, Weis D (2011) Geochemical implications of gabbro from the slow-spreading northern central Indian ocean ridge, Indian Ocean. Geol Mag 148(3):404–422

    Article  Google Scholar 

  • Ray D, Kamesh Raju KA, Baker ET, Rao AS, Mudholkar AV, Lupton JE, Prakash LS, Gawas RB, Kumar TV (2012) Hydrothermal plumes over the Carlsberg Ridge, Indian Ocean. Geochem Geophys Geosyst 13, Q01009. doi:10.1029/2011GC003888

    Article  Google Scholar 

  • Rehkämper M, Halliday AN, Fitton JG, Lee D-C, Wienke M, Arndt NT (1999) Ir, Ru, Pt and Pd in basalts and komatiites: new constraints for the geochemical behavior of the platinum group elements in the mantle. Geochim Cosmochim Acta 63:3915–3934

    Article  Google Scholar 

  • Seyfried WE Jr, Berndt ME, Seewald JS (1988) Hydrothermal alteration processes at mid ocean ridges: constraints from diabase alteration experiments, hot spring fluids and composition of the ocean crust. Can J Earth Sci 26:787–804

    Google Scholar 

  • Sun S-s, McDonough WF (1989) Chemical and isotope systematics of ocean basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc Lond Spec Publ 42:313–345

  • Tao C, Lin J, Guo S, Chen YJ, Wu G, Han X, German CR, Yoerger DR, Zhou N, Li H, Su X, Zhu J, the DY115–19 (Legs 1–2) and DY115–20 (Legs 4–7) Science Parties (2012) First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge. Geology 40(1):47–50. doi:10.1130/G32389.1

    Article  Google Scholar 

  • Tivey MK, Humphris SE, Thompson G, Hannington MD, Rona PA (1995) Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data. J Geophys Res 100:12527–12555

    Article  Google Scholar 

  • Tivey MA, Schouten H, Kleinrock MC (2003) A near-bottom magnetic survey of the Mid-Atlantic Ridge axis at 26°N: implications for the tectonic evolution of the TAG segment. J Geophys Res Solid Earth 108:2277. doi:10.1029/2002JB001967

    Article  Google Scholar 

  • Van Dover CL, Humphris S, Fornari D, Cavanaugh C, Collier R, Goffredi SK, Hashimoto J, Lilley MD, Reysenbach AL, Shank TM, Von Damm KL, Banta A, Gallant RM, Gotz D, Green D, Hall J, Harmer TL, Hurtado LA, Johnson P, McKiness ZP, Meredith C, Olson E, Pan LL, Turnipseed M, Won Y, Young CR III, Vrijenhoek R (2001) Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science 294:818–823

    Article  Google Scholar 

  • Verma SP (1992) Seawater alteration effects on REE, K, Rb, Cs, Sr, U, Th, Pb and Sr-Nd-Pb isotope systematic of mid-ocean ridge basalts. Geochem J 26:159–177

    Article  Google Scholar 

  • Wang Y, Han X, Petersen S, Jin X, Qiu Z, Jihao Zhu J (2014) Mineralogy and geochemistry of hydrothermal precipitates from Kairei hydrothermal field, Central Indian Ridge. Mar Geol 354:69–80

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Director, CSIR-National Institute of Oceanography, India for permission to publish this work. Ship time was provided by the Ministry of Earth Sciences (MoES, New Delhi). This research was partly funded by ONR grant no. 0014-97-1-0925 and the CSIR Network Programme (COR0006). D.R. is grateful to the CSIR, New Delhi for financial support in the form of a Senior Research Fellowship. R.B. is thankful to INSA, New Delhi and JSPS, Tokyo for a fellowship to visit ORI, Tokyo for analytical work. We appreciate the help and support of the captain, crew members and all other colleagues during sampling operations onboard the ORV Sagar Kanya, cruise SK195. J.R. Hein is especially thanked for his aid in analyses of noble metals including Au at the USGS, Menlo Park, California. Valuable comments from S. Misra, two anonymous reviewers and the editors are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranadip Banerjee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, R., Ray, D. Disseminated sulphides in basalts from the northern Central Indian Ridge: implications on late-stage hydrothermal activity. Geo-Mar Lett 35, 91–103 (2015). https://doi.org/10.1007/s00367-014-0396-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-014-0396-9

Keywords

Navigation