Abstract
Macro- and meiofaunal communities were examined at four geomorphologically distinct sites with different gas- and oil-bearing fluid characteristics in the northern, central and southern basins of Lake Baikal. All sites had elevated concentrations of bicarbonate, nitrate, sulphate and chloride ions in pore fluids, with highest values at the Frolikha vent. Elevated levels of iron ions were found in pore waters of the St. Petersburg methane seep and the Gorevoy Utes oil seep. The chemical composition of pore waters at the Malenky mud volcano was similar to that reported in earlier work. Consistent with published data, the Frolikha vent (northern basin) and the St. Petersburg methane seep (central basin) were characterised by methane of mixed genesis (thermogenic + biogenic), whereas the methane source was mainly thermogenic at the Gorevoy Utes oil seep (central basin) and biogenic at the Malenky mud volcano (southern basin). In contrast to marine seep ecosystems, the macrofauna was dominated only by amphipods, giant planarians and oligochaetes, whereas bivalves were absent; the meiofauna was similar to its marine counterpart, being dominated by nematodes, cyclops, harpacticoids and ostracods. A statistically significant positive relationship was revealed between faunal abundance and the availability of bacterial mats on seep sediments. Moreover, ANOVA tests showed significant increases in both meiozoobenthic and macrozoobenthic densities at “hot spot” vent/seep sites relative to discharge-free reference sites. The isotopic composition of carbon and nitrogen at various trophic levels of these benthic vent/seep communities was found to differ markedly from that reported by earlier studies for the pelagic and other benthic food webs in Lake Baikal. As in marine seeps, the macrofauna had variable isotopic signatures. Light δ13C and δ15N values suggest the utilization of chemosynthetically fixed and/or methane-derived organic matter. By contrast, the heavy δ13C signatures of some mobile amphipods likely reflect consumption of photosynthetically derived carbon. These findings would at least partly explain why Lake Baikal is a notable outlier in global temperature–biodiversity patterns, exhibiting the highest biodiversity of any lake worldwide but at an extremely cold average temperature.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Allen AP, Brown JH, Gillooly JF (2002) Global biodiversity, biomechanical kinetics, and the energetic-equivalence rule. Science 297:1545–1548
Boetius A, Suess E (2004) Hydrate Ridge: a natural laboratory for the study of microbial life fuelled by methane from near-surface gas hydrates. Chem Geol 205:291–310
Brooks JM, Kennicutt MC II, Fisher CR, Macko SA, Cole K, Childress JJ, Bidigare RR, Vetter RD (1987) Deep-sea hydrocarbon seep communities: evidence for energy and nutritional carbon sources. Science 238:1138–1142
Callender E, Granina L (1997) Geochemical mass balances of major elements in Lake Baikal. Limnol Oceanogr 42(1):148–155
Cordes EE, Da Chunha MR, Galeron J, Mora C, Olu-Le Roy K, Sibuet M, Van Gaver S, Vanreusel A, Levin L (2010) The influence of geological, geochemical, and biogenic habitat heterogeneity on seep diversity. Mar Ecol 31:51–65. doi:10.1111/j.1439-0485.2009.00334.x
Crane K, Hecker B, Golubev V (1991) Hydrothermal vents in Lake Baikal. Nature 350:281
Cuylaerts M, Naudts L, Casier R, Khabuev AV, Belousov OV, Kononov EE, Khlystov O, De Batist M (2012) Distribution and morphology of mud volcanoes and other fluid flow-related lake-bed structures in Lake Baikal, Russia. Geo-Mar Lett. doi:10.1007/s00367-012-0291-1
De Batist M, Klerkx J, Van Rensbergen PV, Vanneste M, Poort J, Golmshtok AY, Kremlev A, Khlystov OM, Krinitsky P (2002) Active hydrate destabilization in Lake Baikal, Siberia. Terra Nova 14(6):436–442
Demopoulos AWJ, Gualtieri D, Kovacs K (2010) Food-web structure of seep sediment macrobenthos from the Gulf of Mexico. Deep-Sea Res II 57(21/23):1972–1981
Ding H, Valentine DL (2008) Methanotrophic bacteria occupy benthic microbial mats in shallow marine hydrocarbon seeps, Coal Oil Point, California. J Geophys Res 113:1–11. doi:10.1029/2007JG000537
Efremova SM, Fialkov VA, Kouzin VS (1995) Methanotrophic symbiotic bacteria are found in deepwater sponges (in Russian). In: Abstr Vol 2nd Vereshchagin Baikal Conf, 5–10 October 1995, Irkutsk, pp 62–63
Fisher CR (1990) Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev Aquat Sci 2(3/4):399–436
Fisher CR, Childress JJ, Arp AJ, Brooks JM, Distel DL, Dugan JA, Felbeck H, Fritz LW, Hessler RR, Johnson KS, Kennicutt MC II, Lutz RA, Macko SA, Newton A, Powell MA, Somero GN, Soto T (1988) Variation in the hydrothermal vent clam, Caliptogena magnifica, at the Rose Garden vent on the Galapagos spreading centre. Deep-Sea Res 35:1811–1831
Gagarin VG, Naumova TV (2010) Two new species of free-living nematodes from Lake Baikal, Russia. Russ J Nematol 18(2):103–110
Gagarin VG, Naumova TV (2011) Two new species of Dorylaimids (Nematoda, Dorylaimida) from Lake Baikal. Inland Water Biol 4(1):28–33
Gebruk AV, Kuznetsov AI, Namsaraev BB, Miller YM (1993) The role of bacterial organic matter in the nutrition of deep-water benthic fauna in Frolikha Bay (Lake Baikal) under conditions of increased thermal flow (in Russian). Izv Akad Nauk Ser Biol 6:903–908
Gebruk AV, Krylova EM, Lein AY, Vinogradov GM, Anderson E, Pimenov NV, Cherkashev GA, Crane K (2003) Methane seep community of the Håkon Mosby mud volcano (the Norwegian Sea): composition and trophic aspects. Sarsia 88:394–403. doi:10.1080/00364820310003190
Ginsburg GD, Soloviev VA (1994) Mud volcano gas hydrates in the Caspian Sea. Bull Geol Soc Denmark 41:95–100
Golubev VA (1993) Sources of subaqueous discharge and heat balance of North Baikal (in Russian). Dokl Akad Nauk 328(3):315–318
Grachev M, Fialkov V, Nakamura T, Ohta T, Kawai T (1995) Extant fauna of ancient carbon. Nature 374:123–124
Granin NG, Makarov MM, Kucher KM, Gnatovsky RY (2010) Gas seeps in Lake Baikal—detection, distribution, and implications for water column mixing. Geo-Mar Lett 30(3/4):399–409. doi:10.1007/s00367-010-0201-3
Granina LZ (2008) Early diagenesis of bottom sediments in Lake Baikal (in Russian). Academic Publishing House Geo, Novosibirsk
Hachikubo A, Khlystov O, Krylov A, Sakagami H, Minami H, Nunokawa Y, Yamashita S, Takahashi N, Shoji H, Nishio S, Kida M, Ebinuma T, Kalmychkov G, Poort J (2010) Molecular and isotopic characteristics of gas hydrate-bound hydrocarbons in southern and central Lake Baikal. Geo-Mar Lett 30(3/4):321–329. doi:10.1007/s00367-010-0203-1
Hovland M, Jensen S, Fichler C (2012) Methane and minor oil macro-seep systems—their complexity and environmental significance. Mar Geol. doi:10.1016/j.margeo.2012.02.014
Hutchinson DR, Golmshtok AJ, Zonenshain LP, Moore TC, Scholz CA, Klitgord KD (1992) Depositional and tectonic framework of the rift basins of Lake Baikal from multichannel seismic data. Geology 20:589–592
Jones R, Grey J (2011) Biogenic methane in freshwater food webs. Freshwater Biol 56:213–229. doi:10.1111/j.1365-2427.2010.02494.x
Kadnikov VV, Mardanov AV, Beletsky AV, Shubenkova OV, Pogodaeva TV, Zemskaya TI, Ravin NV, Skryabin KG (2012) Microbial community structure in methane hydrate-bearing sediments of freshwater Lake Baikal. FEMS Microbiol Ecol 79(2):348–358
Kalmychkov GV, Egorov AV, Kuz’min MI, Khlystov OM (2006) Genetic types of methane from Lake Baikal. Dokl Earth Sci 411(2):1462–1465. doi:10.1134/S1028334X06090285
Kaygorodova IA (2011) Deep-water fauna of Oligochaeta (Annelida, Clitellata) near a hydrothermal spring of Frolikha Bay, Northern Baikal (East Siberia, Russia) (in Russian). J Siberian Fed Univ Biol 2(4):117–132
Khlystov OM (2006) New findings of gas hydrates in Baikal bottom sediments (in Russian). Geologiya Geofizika 47(8):979–981
Khlystov OM, Gorshkov AG, Egorov AV, Zemskaya TI, Granin NG, Kalmichkov GV, Vorobeva SS, Pavlova ON, Yakup MA, Makarov MM, Moskvin VI, Grachev MA (2007) Oil in the lake of world heritage. Dokl Earth Sci 415(1):682–685. doi:10.1134/S1028334X07050042
Khlystov OM, Zemskaya TI, Sitnikova TY, Mekhamikova IV, Kaigorodova IA, Gorshkov AG, Timoshkin OA, Shubenkova OV, Cherernitsina SM, Lomakina AV, Likhoshvai AV, Sagalevich AM, Moskvin VI, Peresypkin VI, Belyaev NA, Slipenchuk MV, Tulokhonov FK, Grachev MA (2009) Bottom bituminous constructions and biota inhabiting them according to investigation of Lake Baikal with the Mir submersible. Dokl Earth Sci 429(1):1333–1336. doi:10.1134/S1028334X09080200
Kipfer R, Aeschbach-Hertig W, Hofer M, Hohmann R, Imboden DM, Baur H, Golubev V, Klerkx J (1996) Bottomwater formation due to hydrothermal activity in Frolikha Bay, Lake Baikal, eastern Siberia. Geochim Cosmochim Acta 60(6):961–971
Kiyashko SI, Mamontov AM, Chernyaev MZ (1991) Analysis of nutritional relations in the Lake Baikal fishes from the ratios of stable carbon isotopes (in Russian). Dokl Akad Nauk SSSR 318:1268–1271
Kiyashko SI, Richard P, Chandler T, Kozlova TA, Willams DF (1998) Stable carbon isotope ratios differentiate autotrophs supporting animal diversity in Lake Baikal. C R Acad Sci III Sci Vie 321:509–516
Kiyashko SI, Narita T, Wada E (2001) Contribution of methanotrophs to freshwater macroinvertebrates: evidence from stable isotope ratios. Aquat Microb Ecol 24:203–207
Klerkx J, Zemskaya TI, Matveeva TV, Khlystov OM, Namsaraev BB, Dagurova OP, Golobokova LP, Vorobyova SS, Pogodaeva TP, Granin NG, Kalmychkov GV, Ponomarchuk VA, Shoji H, Mazurenko LL, Kaulio VV, Solovyov VA, Grachev MA (2003) Methane hydrates in surface layer of deepwater sediments of Lake Baikal (in Russian). Dokl Earth Sci 393:822–826
Klerkx J, De Batist M, Poort J, Hus R, Van Rensbergen P, Khlystov O, Granin N (2006) Tectonically controlled methane escape in Lake Baikal. In: Lombardi S, Altunina LK, Beaubien SE (eds) Advances in the geological storage of carbon dioxide. NATO Science Series, IV. Earth and Environmental Sciences. IOS Press, Springer, Dordrecht, vol 65, pp 203–219
Klump JV, Remsen CC, Kaster JL (1988) The presence and potential impact of geothermal activity on the chemistry and biology of Yellowstone Lake Wyoming. Natural Undersea Resources Prog Res Rep 88(4):151
Kontorovich AE, Kashirtsev VA, Moskvin VI, Burshtein LM, Zemskaya TI, Kostyreva EA, Kalmychkov GV, Khlystov OM (2007) Petroleum potential of Baikal deposits. Russian J Geol Geophys 48(12):1046–1053
Kozhov M (1963) Lake Baikal and its life. W. Junk, The Hague
Krylov AA, Khlystov OM, Hachikubo A, Minami H, Nunokawa Y, Shoji H, Zemskaya TI, Naudts L, Pogodaeva TV, Kida M, Kalmychkov GV, Poort J (2010) Isotopic composition of dissolved inorganic carbon in subsurface sediments of gas hydrate-bearing mud volcanoes, Lake Baikal: implications for methane and carbonate origin. Geo-Mar Lett 30(3/4):427–437. doi:10.1007/s00367-010-0190-2
Kuznetsov AP, Strizhev VP, Kuzin VS, Fialkov VA, Yastrebov VS (1991) New in Lake Baikal nature. Community based on bacterial chemosynthesis (in Russian). Izv Akad Nauk SSSR Ser Biol 5:766–772
Levin LA, Michener RH (2002) Isotopic evidence for chemosynthesis-based nutrition of macrobenthos: the lightness of being at Pacific methane seeps. Limnol Oceanogr 47(5):1336–1345
MacDonald IR, Boland GC, Bacer GS, Brooks JM, Kennicutt MC II, Bidigare RR (1989) Gulf of Mexico hydrocarbon seep communities, II. Spatial distribution of seep organisms and hydrocarbons at Bush Hill. Mar Biol 101:235–247
Malinin LK, Kijaško VI, Vääränen PL (1992) Behavior and distribution of bream (Abramisbrama) in oxygen deficient regions. In: Priede IG, Swift SM (eds) Wildlife telemetry: remote monitoring and tracking of animals. Ellis Horwood, Chichester, pp 297–306
Matveeva TV, Mazurenko LL, Soloviev VA, Klerkx J, Kaulio VV, Prasolov EM (2003) Gas hydrate accumulation in the subsurface sediments of Lake Baikal (Eastern Siberia). Geo-Mar Lett 23(3/4):289–299. doi:10.1007/s00367-003-0144-z
Mazzini H, Svensen S, Planke I, Guliyev GG, Akhmanov T, Fallik D, Banks (2009) When mud volcanoes sleep: insight from seep geochemistry at the Dashgil mud volcano, Azerbaijan. Mar Petrol Geol 26:1704–1715. doi:10.1016/j.marpetgeo.2008.11.003
Moore MV, Hampton SE, Izmest’eva LR, Silow EA, Peshkova EV, Pavlov BK (2009) Climate change and the World’s “Sacred Lake”—Lake Baikal, Siberia. Bioscience 59(5):405–417
Namsaraev BB, Dulov LY, Dubinina GA, Zemskaya TI, Granina LZ, Karabanov YB (1994) Bacterial synthesis and destruction of organic-matter in microbial mats of Lake Baikal. Microbiology 63(2):193–197
Naudts L, Khlystov O, Granin N, Chensky A, Poort J, De Batist M (2012) Stratigraphic and structural control on the distribution of gas hydrates and active gas seeps on the Posolsky Bank. Lake Baikal Geo-Mar Lett. doi:10.1007/s00367-012-0286-y
Ogawa NO, Yoshii K, Melnik NG, Bondarenko NA, Timoshkin OA, Smirnova-Zalumi NS, Smirnov VV, Wada E (2000) Carbon and nitrogen isotope studies of the pelagic ecosystem and environmental fluctuations of Lake Baikal. In: Minoura K (ed) Lake Baikal. A mirror in time and space for understanding global change processes. Proc BICER-BDP-DIWPA Baikal Symp, 4–8 November 1998, Yokohama. Elsevier, Amsterdam, pp 262–272
Olu-Le Roy K, Sibuet M, Fiala-Médioni A, Gofas S, Salas C, Mariotti A, Foucher J-P, Woodside J (2004) Cold seep communities in the deep eastern Mediterranean Sea: composition, symbiosis and spatial distribution on mud volcanoes. Deep-Sea Res I 51:1915–1936. doi:10.1016/j.dsr.2004.07.004
Poort J, Khlystov OM, Naudts L, Duchkov AD, Shoji H, Nishio S, De Batist M, Hachikubo A, Kida M, Minami H, Manakov AY, Kulikova MV, Krylov AA (2012) Thermal anomalies associated with shallow gas hydrates in the K-2 mud volcano. Lake Baikal Geo-Mar Lett. doi:10.1007/s00367-012-0292-0
Proviz VI (2005) Chromosomal polymorphism of the unique Baikal deep-water population of Sergentia flavodentata (Diptera, Chironomidae) from the region of hydrothermal venting. Russ J Genetics 41(3):284–290. doi:10.1007/s11177-005-0086-9
Proviz VI (2008) Speciation and chromosomal evolution of the Baikalian endemic chironomids of the genus Sergentia Kief. (Diptera, Chironomidae): karyotype divergence and chromosomal polymorphism in the populations of deep-water species Sergentia nebulosa Linevitsh et al. and Sergentia assimilis Proviz V. et Proviz L. Russ J. Genetics 44(12):1409–1418. doi:10.1134/S1022795408120041
Sahling Y, Rickert D, Lee RW, Linke P, Suess E (2002) Macrofaunal community structure and sulfide flux at gas hydrate deposits from the Cascadia convergent margin, NE Pacific Ocean. Mar Ecol Prog Ser 231:121–138
Sassen R, Joye S, Sweet ST, DeFreitas DA, Milkov AV, MacDonald IR (1999) Thermogenic gas hydrates and hydrocarbon gases in complex chemosynthetic communities, Gulf of Mexico continental slope. Org Geochem 30(7):485–497
Sassen R, Milkov AV, Ozgu E, Robert HH, Hunt JL, Beeuna MA, Chanton JP, DeFreitas D, Sweet ST (2003) Gas venting and subsurface charge in the Green Canyon area, Gulf of Mexico continental slope: evidence of a deep bacterial methane source? Org Geochem 34:1455–1464
Sideleva VG (2003) The endemic fishes of Lake Baikal. Backhuys, Leiden
Sommer S, Gutzmann K, Ahlrichs W, Pfannkuche O (2003) Rotifers colonizing sediments with shallow gas hydrates. Naturwissenschaften 90:273–276
Stadnitskaia A, Ivanov MK, Blinova V, Kreulen R, Van Weering TCE (2006) Molecular and carbon isotopic variability of hydrocarbon gases from mud volcanoes in the Gulf of Cadiz, NE Atlantic. Mar Petrol Geol 23:281–296
Steichen DJ, Holbrook S, Osenberg CW (1996) Distribution and abundance of benthic and demersal macrofauna within a natural hydrocarbon seep. Mar Ecol Prog Ser 138:71–82
Strizhev VP, Kuznetsov AP, Gurina VN (1990) Compounds of early diagenesis of sediments as energy source in food web of bottom community of Conchocela sp. (Bivalvia) around gas hydrate vents near the Paramushir Island (the Sea of Okhotsk) (in Russian). Okeanologia 30:666–671
Takhteev VV, Snimshchikova LN, Okuneva GL, Timoshkin OA, Obolkina LA, Tanichev AI (1993) A description of bottom inhabitants of the deep zone of Lake Baikal (in Russian). Ecologiya 6:60–68
Tarasov VG (2006) Effects of shallow water hydrothermal venting on biological communities of coastal marine ecosystems of the Western Pacific. Adv Mar Biol 50:267–421
Thurber AR, Kroger K, Neira C, Wiklund H, Levin LA (2010) Stable isotope signatures and methane use by New Zealand cold seep benthos. Mar Geol 272:260–269. doi:10.1016/j.margeo.2009.06.001
Tiercelin J-J, Pflumio C, Castrec M, Boulègue J, Gente P, Rolet J, Coussement C, Stetter KO, Huber R, Buku S, Mifundu W (1993) Hydrothermal vents in Lake Tanganyika, East African Rift system. Geology 21(6):499–502
Valentine DL (2002) Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. Antonie Van Leeuwenhoek 81:271–282
Van Dover CL, Fry B (1989) Stable isotopic compositions of hydrothermal vent organisms. Mar Biol 102:257–263
Van Rensbergen P, De Batist M, Klerkx J, Hus R, Poort J, Vanneste M, Granin N, Khlystov O, Krinitsky P (2002) Sublacustrine mud volcanoes and methane seeps caused by dissociation of gas hydrates in Lake Baikal. Geology 30(7):631–634
Vanreusel A, De Groote A, Gollner S, Bright M (2010) Ecology and biogeography of free-living nematodes associated with chemosynthetic environments in the deep sea: a review. PLoS One 5(8):1–15. doi:10.1371/journal.pone.0012449
Vinogradov GA, Berezina NA, Lapteva NA, Zharikov GP (2002) Use of structural characteristics of bacterio- and zoobenthos for assessing the quality of bottom deposits: case study of water bodies in the Upper Volga Basin. Water Resour 29(3):299–305
Wegener G, Niemann H, Elvert M, Hinrichs K-U, Boetius A (2008) Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane. Environ Microbiol 10:2287–2298. doi:10.1111/j.1462-2920.2008.01653.x
Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314
Yoshii K (1999) Stable isotope analysis of benthic organisms in Lake Baikal. Hydrobiologia 11:145–159
Yoshii K, Melnik NG, Timoshkin OA, Bondarenko NA, Anoshko PN, Yoshioka T, Wada E (1999) Stable isotope analyses of the pelagic food web in Lake Baikal. Limnol Oceanogr 44(3):502–511
Zemskaya TI, Namsaraev BB, Dultseva NM, Khanaeva TA, Golobokova LP, Dubunina GA, Dulov LE, Wada E (2001) Ecophysiological characteristics of the mat-forming bacterium Thioploca in bottom sediments of the Frolikha Bay, Northern Baikal. Microbiology 70(3):335–341. doi:10.1023/A:1010463613498
Zemskaya TI, Pogodaeva TV, Shubenkova OV, Chernitsina SM, Dagurova OP, Buryukhaev SP, Namsaraev BB, Khlystov OM, Egorov AV, Krylov AA, Kalmychkov GV (2010) Geochemical and microbiological characteristics of sediments near the Malenky mud volcano (Lake Baikal, Russia), with evidence of Archaea intermediate between the marine anaerobic methanotrophs ANME-2 and ANME-3. Geo-Mar Lett 30(3/4):411–425. doi:10.1007/s00367-010-0199-6
Acknowledgements
The service of the deepwater manned Mir submersible was organised and financially supported by Fund of the Conservation of Lake Baikal, and the Metropol Company. The authors are grateful to A. Bityutsky, captain of the research vessel Koptyug, and M. Sakirko for their assistance during the expedition, to Prof. L.A. Kutikova for rotifer identification, and to G. Nagornaya for translating the manuscript. The work was supported by SB RAS Integration project no. 27, RFFR project no. 10-04-10100-k, RAS Presidium Programme project no. 21.9 and RFFR project no. 12-05-98011. The authors are very thankful to A. Rowden, an anonymous reviewer, and the journal editor M.T. Delafontaine for useful comments.
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible guest editors: M. De Batist and O. Khlystov
Rights and permissions
About this article
Cite this article
Zemskaya, T.I., Sitnikova, T.Y., Kiyashko, S.I. et al. Faunal communities at sites of gas- and oil-bearing fluids in Lake Baikal. Geo-Mar Lett 32, 437–451 (2012). https://doi.org/10.1007/s00367-012-0297-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00367-012-0297-8