Geo-Marine Letters

, Volume 28, Issue 5–6, pp 359–368 | Cite as

Experimentally determined Mg/Ca and Sr/Ca ratios in juvenile bivalve calcite for Mytilus edulis: implications for paleotemperature reconstructions

  • Alan D. Wanamaker Jr
  • Karl J. Kreutz
  • Tiffany Wilson
  • Harold W. Borns Jr
  • Douglas S. Introne
  • Scott Feindel
Original

Abstract

To further evaluate the potential use of Mg/Ca and Sr/Ca ratios as a paleothermometer in the shell carbonate of the blue mussel Mytilus edulis, we grew juvenile mussels (∼15 mm shell height; <2 years old) collected from Maine, USA, in controlled environments for 4 months. The four-by-three factorial design consisted of four circulating temperature baths (7, 11, 15 and 19°C), and three salinity ranges (23, 28, and 32). During the experiment, water Mg/Ca and Sr/Ca molar ratios were monitored weekly, and showed little variation across all salinity and temperature ranges. Data from sampled shells including all salinity treatments yielded relatively poor relationships between shell elemental chemistry and water temperatures. However, if only the low salinity treatment data (23) are used, the relationships between shell elemental chemistry and water temperature improve moderately. Based on the data presented here, it may be possible to use Mg/Ca and Sr/Ca ratios from the shell carbonate of juvenile M. edulis to reconstruct paleotemperatures in estuarine settings (salinity below 24) with a corresponding RMSE (root mean squared error; 95% confidence interval) of ±2.4°C and ±2.8°C, respectively. In order for this methodology to be statistically meaningful, water temperature changes must be rather large, as the errors associated with using Mg/Ca and Sr/Ca ratios from the shell material of M. edulis are substantial. Further work is required to determine if the findings presented here can be duplicated, and if the potential salinity effect is pervasive.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beck JW, Edwards RL, Ito E, Taylor FW, Recy J, Rougerie F, Joannot P, Henin C (1992) Sea-surface temperature from coral skeletal strontium calcium ratios. Science 257:644–647CrossRefGoogle Scholar
  2. Carré M, Bentaleb I, Bruguier O, Ordinola E, Barrett NT, Fontugne M (2006) Calcification rate influence on trace element concentrations in aragonitic bivalve shells: evidences and mechanisms. Geochim Cosmochim Acta 70:4906–4920CrossRefGoogle Scholar
  3. Carter JG, Seed R (1998) Thermal potential and mineralogical evolution in Mytilus (Mollusca; Bivalvia). In: Johnston PA, Haggart JW (eds) Bivalves: an eon of evolution. University of Calgary Press, Calgary, pp 87–117Google Scholar
  4. Chauvaud L, Lorrain A, Dunbar RB, Paulet Y-M, Thouzeau G, Jean F, Guarini J-M, Mucciarone D (2005) Shell of the Great Scallop Pecten maximus as a high-frequency archive of paleoenvironmental changes. Geochem Geophys Geosyst 6:Q08001 doi:10.1029/2004GC000890 CrossRefGoogle Scholar
  5. Clark GR (1976) Shell growth in the marine environment—approaches to problem of marginal calcification. Am Zool 16:617–626Google Scholar
  6. Dodd JR (1965) Environmental control of strontium and magnesium in Mytilus. Geochim Cosmochim Acta 29:385–398CrossRefGoogle Scholar
  7. Dodd JR, Crisp EL (1982) Non-linear variation with salinity of Sr/Ca and Mg/Ca ratios in water and aragonitic bivalve shells and implications of paleosalinity studies. Palaeogeogr Palaeoclimatol Palaeoecol 38:45–56CrossRefGoogle Scholar
  8. Elderfield H, Ganssen G (2000) Past temperature and delta O-18 of surface ocean waters inferred from foraminiferal Mg/Ca ratios. Nature 405:442–445CrossRefGoogle Scholar
  9. Elliot M, deMenocal PB, Linsley BK, Howe SS (2003) Environmental controls on the stable isotopic composition of Mercenaria mercenaria: potential application to paleoenvironmental studies. Geochem Geophys Geosyst 4:1056 doi:10.1029/2002GC000425 CrossRefGoogle Scholar
  10. Emiliani C (1966) Isotopic paleotemperatures. Science 154:851–857CrossRefGoogle Scholar
  11. Epstein S, Buchsbaum R, Lowenstam HA, Urey HC (1953) Revised carbonate–water isotopic temperature scale. Bull Geol Soc Am 64:1315–1326CrossRefGoogle Scholar
  12. Freitas P, Clark LJ, Kennedy H, Richardson C, Abrantes F (2005) Mg/Ca, Sr/Ca, and stable-isotope (δ18O and δ13C) ratio profiles from fan mussel Pinna nobilis: seasonal records and temperature relationships. Geochem Geophys Geosyst 6:Q04D14 doi:10.1029/2004GC000872 CrossRefGoogle Scholar
  13. Freitas PS, Clarke LJ, Kennedy H, Richardson CA, Abrantes F (2006) Environmental and biological controls on elemental (Mg/Ca, Sr/Ca and Mn/Ca) ratios in shells of the king scallop Pecten maximus. Geochim Cosmochim Acta 70:5119–5133CrossRefGoogle Scholar
  14. Gillikin DP, Lorrain A, Navez J, Taylor JW, Keppens E, Baeyens W, Dehairs F (2005) Strong biological controls on Sr/Ca ratios in aragonitic marine bivalve shells. Geochem Geophys Geosyst 6:Q05009 doi:10.1029/2004GC000874 CrossRefGoogle Scholar
  15. Gillikin DP, Dehairs F, Lorrain A, Steenmans D, Baeyens W, Andre L (2006a) Barium uptake into the shells of common mussel (Mytilus edulis) and the potential for estuarine paleo-chemistry reconstruction. Geochim Cosmochim Acta 70:395–407CrossRefGoogle Scholar
  16. Gillikin DP, Lorrain A, Bouillon S, Willenz P, Dehairs F (2006b) Stable carbon isotopic composition of Mytilus edulis shells: relation to metabolism, salinity, δ13CDIC and phytoplankton. Org Geochem 37:1371–1382CrossRefGoogle Scholar
  17. Grossman EL, Ku TL (1986) Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chem Geol 59:59–74CrossRefGoogle Scholar
  18. Jones DS (1980) Annual cycle of shell growth increment formation in two continental shelf bivalves and its paleoecologic significance. Paleobiology 6:331–340Google Scholar
  19. Jones DS, Arthur MA, Allard DJ (1989) Sclerochronological records of temperature and growth from shells of Mercenaria mercenaria from Narragansett Bay, Rhode Island. Mar Biol 102:225–234CrossRefGoogle Scholar
  20. Klein RT, Lohmann KC, Thayer CW (1996a) Bivalve skeletons record sea–surface temperature and δ18O via Mg/Ca and 18O/16O ratios. Geology 24:415–418CrossRefGoogle Scholar
  21. Klein RT, Lohmann KC, Thayer CW (1996b) Sr/Ca and 13C/12C ratios in skeletal calcite of Mytilus trossulus: covariation with metabolic rate, salinity, and carbon isotopic composition of seawater. Geochim Cosmochim Acta 60:4207–4221CrossRefGoogle Scholar
  22. Koehn RK (1991) The genetics and taxonomy of species in the genus Mytilus. Aquaculture 94:125–145CrossRefGoogle Scholar
  23. Krantz DE, Williams DF, Jones DS (1987) Ecological and paleoenvironmental information using stable isotopic profiles from living and fossil molluscs. Palaeogeogr Palaeoclimatol Palaeoecol 58:249–266CrossRefGoogle Scholar
  24. Lazareth CE, Vander Putten E, Andre L, Dehairs F (2003) High-resolution trace element profiles in shells of the mangrove bivalve Isognomon ephippium: a record of environmental spatio-temporal variations? Estuar Coast Shelf Sci 57:1103–1114CrossRefGoogle Scholar
  25. Lea DW, Mashiotta TA, Spero HJ (1999) Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing. Geochim Cosmochim Acta 63:2369–2379CrossRefGoogle Scholar
  26. Lorens RB, Bender ML (1980) The impact of solution chemistry on Mytilus edulis calcite and aragonite. Geochim Cosmochim Acta 44:1265–1278CrossRefGoogle Scholar
  27. Lorrain A, Gillikin DP, Paulet Y-M, Chauvaud L, Mercier AL, Navez J, Andre L (2005) Strong kinetic effects on Sr/Ca ratios in the calcitic bivalve Pecten maximus. Geology 12:965–968CrossRefGoogle Scholar
  28. Quinn TM, Sampson DE (2002) A multiproxy approach to reconstructing sea surface conditions using coral skeleton geochemistry. Paleoceanography 17:14–11CrossRefGoogle Scholar
  29. Richardson CA (1989) An analysis of the microgrowth bands in the shell of the common mussel Mytilus edulis. J Mar Biol Assoc UK 69:477–491CrossRefGoogle Scholar
  30. Richardson CA (2001) Molluscs as archives of environmental change. Oceanogr Mar Biol 39:103–164Google Scholar
  31. Rosenthal Y, Lohmann GP, Lohmann KC, Sherrell RM (2000) Incorporation and preservation of Mg in Globigerinoides sacculifer: implications for reconstructing the temperature and 18O/16O of seawater. Paleoceanography 15:135–145CrossRefGoogle Scholar
  32. Schöne BR, Oschmann W, Rossler J, Castro ADF, Houk SD, Kröncke I, Dreyer W, Janssen R, Rumohr H, Dunca E (2003) North Atlantic oscillation dynamics recorded in shells of a long-lived bivalve mollusk. Geology 31:1037–1040CrossRefGoogle Scholar
  33. Schöne BR, Fiebig J, Pfeiffer M, Gleß R, Hickson J, Johnson A, Dreyer W, Oschmann W (2005) Climate records from a bivalve Methuselah (Arctica islandica, Mollusca; Iceland). Palaeogeogr Palaeoclimatol Palaeoecol 228:130–148CrossRefGoogle Scholar
  34. Seed R, Suchanek TH (1992) Population and community ecology of Mytilus. In: Gossling ED (ed) The mussel Mytilus: ecology, physiology, genetics and culture. Elsevier, Amsterdam, pp 87–170Google Scholar
  35. Shen CC, Lee T, Chen CY, Wang CH, Dai CF, Li LA (1996) The calibration of D[Sr/Ca] versus sea surface temperature relationship for Porites corals. Geochim Cosmochim Acta 60:3849–3858CrossRefGoogle Scholar
  36. Takesue R, van Green A (2004) Mg/Ca and Sr/Ca and stable isotopes in modern and Holocene Protothaca staminea shells from a northern California coastal upwelling region. Geochim Cosmochim Acta 68:3845–3861CrossRefGoogle Scholar
  37. Vander Putten E, Dehairs F, Keppens E, Baeyens W (2000) High resolution distribution of trace elements in the calcite shell layer of modern Mytilus edulis: environmental and biological controls. Geochim Cosmochim Acta 64:997–1011CrossRefGoogle Scholar
  38. Wanamaker AD Jr, Kreutz KJ, Borns HW Jr, Introne DS, Feindel S, Barber BJ (2006) An aquaculture-based method for calibrated bivalve isotope paleothermometry. Geochem Geophys Geosyst 7:Q09011 doi:10.1029/2005GC001189 CrossRefGoogle Scholar
  39. Wanamaker AD Jr, Kreutz KJ, Borns HW, Introne DS, Feindel S, Funder S, Rawson PD, Barber BJ (2007) Experimental determination of salinity, temperature, growth, and metabolic effects on shell isotope chemistry of Mytilus edulis collected from Maine and Greenland. Paleoceanography 22:PA2217 doi:10.1029/2006PA001352 CrossRefGoogle Scholar
  40. Wanamaker AD Jr, Kreutz KJ, Schöne BR, Pettigrew N, Borns HW, Introne DS, Belknap D, Maasch KA, Feindel S (2008) Coupled North Atlantic slope water forcing on Gulf of Maine temperatures over the past millennium. Clim Dyn 31:183 doi:10.1007/s00382-007-0344-8 CrossRefGoogle Scholar
  41. Watabe N (1988) Shell structure. In: Trueman ER, Clarke MR (eds) The Mollusca. Academic, New York, pp 69–74Google Scholar
  42. Weidman C, Jones GA, Lohmann KC (1994) The long-lived mollusk Arctica islandica: a new paleoceanographic tool for the reconstruction of bottom temperatures for the continental shelves of northern Atlantic Ocean. J Geophys Res 99:18,305–318,314Google Scholar
  43. Wheeler A (1992) Mechanisms of molluscan shell formation. In: Bonucci E (ed) Calcification in biological systems. CRC, Boca Raton, pp 179–216Google Scholar
  44. Witbaard R, Duinveld GCA, de Wild PAWJ (1999) Geographical differences in growth rates of Arctica islandica (Mollusca: Bivalvia) from the North Sea and adjacent waters. J Mar Biol Assoc UK 79:907–915CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Alan D. Wanamaker Jr
    • 1
    • 2
    • 5
  • Karl J. Kreutz
    • 1
    • 2
  • Tiffany Wilson
    • 3
  • Harold W. Borns Jr
    • 1
    • 2
  • Douglas S. Introne
    • 1
    • 2
  • Scott Feindel
    • 4
  1. 1.Climate Change InstituteUniversity of MaineOronoUSA
  2. 2.Department of Earth SciencesUniversity of MaineOronoUSA
  3. 3.Sawyer Environmental Chemistry Research LaboratoryUniversity of MaineOronoUSA
  4. 4.Darling Marine CenterUniversity of MaineWalpoleUSA
  5. 5.School of Ocean SciencesBangor UniversityBangorUK

Personalised recommendations