Geo-Marine Letters

, Volume 27, Issue 2–4, pp 279–288 | Cite as

Gas hydrate disturbance fabrics of southern Hydrate Ridge sediments (ODP Leg 204): Relationship with texture and physical properties

  • Elena Piñero
  • Eulàlia Gràcia
  • Francisca Martínez-Ruiz
  • Juan Cruz Larrasoaña
  • Alexis Vizcaino
  • Gemma Ercilla


Soupy and mousse-like fabrics are disturbance sedimentary features that result from the dissociation of gas hydrate, a process that releases water. During the core retrieval process, soupy and mousse-like fabrics are produced in the gas hydrate-bearing sediments due to changes in pressure and temperature conditions. Therefore, the identification of soupy and mousse-like fabrics can be used as a proxy for the presence of gas hydrate in addition to other evidence, such as pore water freshening or anomalously cool temperature. We present here grain-size results, mineralogical composition and magnetic susceptibility data of soupy and mousse-like samples from the southern Hydrate Ridge (Cascadia accretionary complex) acquired during Leg 204 of the Ocean Drilling Program. In order to study the relationship between sedimentary texture and the presence of gas hydrates, we have compared these results with the main textural and compositional data available from the same area. Most of the disturbed analyzed samples from the summit and the western flank of southern Hydrate Ridge show a mean grain size coarser than the average mean grain size of the hemipelagic samples from the same area. The depositional features of the sediments are not recognised due to disturbance. However, their granulometric statistical parameters and distribution curves, and magnetic susceptibility logs indicate that they correspond to a turbidite facies. These results suggest that gas hydrates in the southern Hydrate Ridge could form preferentially in coarser grain-size layers that could act as conduits feeding gas from below the BSR. Two samples from the uppermost metres near the seafloor at the summit of the southern Hydrate Ridge show a finer mean grain-size value than the average of hemipelagic samples. They were located where the highest amount of gas hydrates was detected, suggesting that in this area the availability of methane gas was high enough to generate gas hydrates, even within low-permeability layers. The mineralogical composition of the soupy and mousse-like sediments does not show any specific characteristic with respect to the other samples from the southern Hydrate Ridge.


  1. Aloisi G, Drews M, Wallmann K, Bohrmann G (2004a) Fluid expulsion from the Dvurechenskii mud volcano (Black Sea). Part I. Fluid sources and relevance to Li, B, Sr, I and dissolved inorganic nitrogen cycles. Earth Planet Sci Lett 225:347–363Google Scholar
  2. Aloisi G, Wallmann K, Haese RR, Saliège J-F (2004b) Chemical, biological and hydrological controls on the 14C content of cold seep carbonate crusts: numerical modelling and implications for convection at cold seeps. Chem Geol 213:383–395CrossRefGoogle Scholar
  3. Bianchi GG, Hall IR, McCave IN, Joseph L (1999) Measurements of the sortable silt current speed proxy using the SediGraph 5100 and Coulter Multisizer Ile: precision and accuracy. Sedimentology 46:1001–1014CrossRefGoogle Scholar
  4. Blinova VN, Ivanov MK, Bohrmann G (2003) Hydrocarbon gases in deposits from mud volcanoes in the Sorokin Trough, north-eastern Black Sea. In: Woodside JM, Garrison RE, Moore JC, Kvenholden KA (eds) Proc 7th int conf gas in marine sediments, 7–12 October 2002, Baku, Azerbaijan. Geo-Mar Lett 23(3/4):250–257Google Scholar
  5. Carlson PR, Nelson CH (1987) Marine geology and resource potential of Cascadia Basin. In: Scholl DW, Grantz A, Vedder JG (eds) Geology and resource potential of the continental margin of western North America and adjacent ocean basins—Beaufort Sea to Baja California. Circum-Pac Council Energy Mineral Res Earth Sci Ser 6:523–535Google Scholar
  6. Charlou JL, Donval JP, Bouquet Y, Ondreas H, Knoery J, Cochonat P, Levaché D, Poirier Y, Jean-Baptiste P, Fourré E, Chazallon B, ZAIROV Leg 2 Scientific Party (2004) Physical and chemical characterization of gas hydrates and associated methane plumes in the Congo-Angola Basin. Chem Geol 205:405–425CrossRefGoogle Scholar
  7. Cita MB, Erba E, Lucchi R, Pott M, van der Meer R, Nieto L (1996) Stratigraphy and sedimentation in the Mediterranean Ridge diapiric belt. Mar Geol 132:131–150CrossRefGoogle Scholar
  8. Egeberg PK, Dickens GR (1999) Thermodynamic and pore water constraints on gas hydrate distribution at ODP Site 997 (Blake Ridge). Chem Geol 153:53–79CrossRefGoogle Scholar
  9. Ergov AV, Crane K, Vogt PR, Rozhkov AN (1999) Gas hydrates that outcrop on the sea floor: stability models. Geo-Mar Lett 19:68–75CrossRefGoogle Scholar
  10. Francisca F, Yun T-S, Ruppel C, Santamarina JC (2005) Geophysical and geotechnical properties of near-seafloor sediments in the northern Gulf of Mexico gas hydrate province. Earth Planet Sci Lett 237:924–939CrossRefGoogle Scholar
  11. Friedman GM, Sanders JO (1978) Principles of sedimentology. Wiley, New YorkCrossRefGoogle Scholar
  12. Gibbs RJ (1974) A settling tube for sand-size analysis. J Sediment Petrol 44:583–588Google Scholar
  13. Ginsburg G, Soloviev V, Matveeva T, Andreeva I (2000) Sediment grain-size control on gas hydrate presence, sites 994, 995 and 997. In: Paull CK, Matsumoto R, Wallace PJ, Dillon WP (eds) Proc ODP Sci Results 164. Ocean Drilling Program, College Station, TX, pp 237–245Google Scholar
  14. Gràcia E, Martínez-Ruiz F, Piñero E, Larrasoaña JC, Vizcaino A, Ercilla G (2006) Data report: grain-size, bulk and clay mineralogy of sediments from the summit and flanks of Southern Hydrate Ridge (Sites 1244 to 1250), ODP Leg 204. In: Tréhu AM, Bohrmann G, Torres ME, Colwell FS (eds) Proc ODP Sci Results 204, sighted 1 October 2006)
  15. Johnson JE, Goldfinger C, Suess E (2003) Geophysical constraints on the surface distribution of authigenic carbonates across the Hydrate Ridge region, Cascadia margin. Mar Geol 202:79–120CrossRefGoogle Scholar
  16. Karisiddaiah SM (2000) Diverse methane concentrations in anoxic brines and underlying sediments, eastern Mediterranean Sea. Deep-Sea Res, I 47:1999–2008Google Scholar
  17. Kastner M, Kvenvolden KA, Whiticar MJ, Camerlenghi A, Lorenson TD (1995) Relation between pore fluid chemistry and gas hydrates associated with bottom-simulating reflectors at the Cascadia margin, Sites 889 and 892. In: Carson B, Westbrook GK, Musgrave RJ, Suess E (eds) Proc ODP Sci Results 146, part 1. Ocean Drilling Program, College Station, TX, pp 175–187Google Scholar
  18. Kimura G, Silver E, Blum P et al (1997) Proc ODP Init Rep 170, sighted 21 October 2005)
  19. Kisch HJ (1991) Illite crystallinity: recommendations on sample preparation, X-ray diffraction settings, and interlaboratory samples. J Metamorph Geol 9:665–670CrossRefGoogle Scholar
  20. Kulm LD, Suess E, Moore JC, Carson B, Lewis BT, Ritger SD, Kadko DC, Thornburg TM, Embley RW, Rugh WD, Massoth GJ, Langseth MG, Cochrane GR, Scamman RL (1986) Oregon subduction zone: venting, fauna and carbonates. Science 231:561–566CrossRefGoogle Scholar
  21. Kvenvolden KA (1988) Methane hydrate—a major reservoir of carbon in the shallow geosphere? Chem Geol 71:41–51CrossRefGoogle Scholar
  22. Larrasoaña JC, Gràcia E, Garcés M, Musgrave RJ, Piñero E, Martínez-Ruiz F, Vega ME (2006) Data report: rock magnetic identification of magnetic iron sulfides and its bearings on the occurrence of gas hydrates, ODP Leg 204 (Southern Hydrate Ridge). In: Tréhu AM, Bohrmann G, Torres ME, Colwell FS (eds) Proc ODP Sci Results 204, sighted 1 October 2006)
  23. MacKay ME (1995) Structural variation and landward vergence at the toe of the Oregon accretionary prism. Tectonics 14(5):1309–1320CrossRefGoogle Scholar
  24. Martín Ramos JD (2004) XPowder, a software package for powder X-ray diffraction analysis. Legal Deposit GR 1001/04
  25. McManus J (1988) Grain-size determination and interpretation. In: Tucker J (ed) Techniques in sedimentology. Blackwell, London, pp 63–85Google Scholar
  26. Micromeritics (1978) Instruction manual: SediGraph particle size analyser. Norcross, GAGoogle Scholar
  27. Milkov AV, Claypool GE, Lee Y-J, Sassen R (2005) Gas hydrate systems at Hydrate Ridge offshore Oregon inferred from molecular and isotopic properties of hydrate-bound and void gases. Geochim Cosmochim Acta 69(4):1007–1026CrossRefGoogle Scholar
  28. Milliman JD (1974) Marine carbonates, 2nd edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  29. Moore JC, Vrolijk P (1992) Fluids in accretionary prisms. Rev Geophys 30(2):113–135Google Scholar
  30. Moore GF, Taira A, Klaus A et al (2001) Proc ODP Init Rep 190, sighted 21 October 2005)
  31. Paull CK, Matsumoto R, Wallace PJ et al (1996) Proc ODP Init Rep 146. Ocean Drilling Program, College Station, TXGoogle Scholar
  32. Piñero E, Gràcia E, Larrasoaña JC, Martínez-Ruiz F, Ercilla G, Vizcaino A, Garcés M (2004) Sedimentología y magnetismo de sedimentos ricos en hidratos de gas de Hydrate Ridge (Margen de Oregón, ODP Leg 204): aplicación en estudios paleoclimáticos. Geo-Temas 6(5):149–152Google Scholar
  33. Piñero E, Gràcia E, Martínez-Ruiz F, Larrasoaña JC, Vizcaino A, Ercilla G (2005) Sedimentological and mineralogical characterization of gas hydrate sediments from ODP-Leg 204, Southern Hydrate Ridge (Cascadia Margin). EGU General Assembly 2005, Geophys Res Abstr Vol 7Google Scholar
  34. Pinheiro LM, Ivanov MK, Sautkin A, Akhmanov G, Magalhães VH, Volkonskaya A, Monteiro JH, Somoza L, Gardner J, Hamouni N, Cunha MR (2003) Mud volcanism in the Gulf of Cadiz: results from the TTR-10 cruise. Mar Geol 195:131–151CrossRefGoogle Scholar
  35. Robertson AHF, Emeis K-C, Richter C, Camerlenghi A (eds) (1998) Proc ODP Sci Results 160, sighted 21 October 2005)
  36. Soh W (1997) Computed tomography scan analysis of site 941 cores, Western Mass-Transport Deposit, Amazon Fan. In: Flood RD, Piper DJW, Klaus A, Peterson LC (eds) Proc ODP Sci Results 155, pp 3–4 (, sighted 21 October 2005)
  37. Soloviev V, Ginsburg G (1997) Water segregation in the course of gas hydrate formation and accumulation in submarine gas-seepage fields. Mar Geol 137:59–68CrossRefGoogle Scholar
  38. Somoza L, Díaz-del-Río V, León R, Ivanov M, Fernández-Puga MC, Gardner JM, Hernández-Molina FJ, Pinheiro LM, Rodero J, Lobato A, Maestro A, Vázquez JT, Medialdea T, Fernández-Salas LM (2003) Seabed morphology and hydrocarbon seepage in the Gulf of Cádiz mud volcano area: acoustic imagery, multibeam and ultra-high resolution seismic data. Mar Geol 195:153–176CrossRefGoogle Scholar
  39. Stein R (1985) Rapid grain-size analyses of clay and silt fraction by SediGraph 5000D: comparison with Coulter counter and Atterberg methods. J Sediment Petrol 55(4):590–615Google Scholar
  40. Su X, Song C-B, Fang NQ (2006) Relationship between sediment granulometry and the presence of gas hydrate on Hydrate Ridge. In: Tréhu AM, Bohrmann G, Torres ME, Colwell FS (eds) Proc ODP Sci Results 204, pp 1–30, sighted 3 September 2006)
  41. Suess E, Torres ME, Bohrmann G, Collier RW, Rickert D, Goldfinger C, Linke P, Heuser A, Sahling H, Heechen K, Jung C, Nakamura K, Greinert J, Pfannkuche O, Trehu A, Klinkhammer G, Whiticar MJ, Eisenhauer A, Teichert B, Elvert M (2001) Sea floor methane hydrates at Hydrate Ridge, Cascadia Margin. In: Paull CK, Dillon WP (eds) Natural gas hydrates: occurrence, distribution, and detection. Geophys Monogr 124:87–98Google Scholar
  42. Teichert BMA, Bohrmann G, Suess E (2005) Chemoherms on Hydrate Ridge – unique microbially-mediated carbonate build-ups growing into the water column. Palaeogeogr Palaeoclimatol Palaeoecol 227:67–85CrossRefGoogle Scholar
  43. Torres ME, Wallmann K, Tréhu AM, Bohrmann G, Borowski WS, Tomaru H (2004) Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia Oregon. Earth Planet Sci Lett 226:225–241CrossRefGoogle Scholar
  44. Tréhu AM, Flueh ER (2001) Estimating the thickness of the free-gas zone beneath Hydrate Ridge, Oregon continental margin, from seismic velocities and attenuation. J Geophys Res 106 B2:2035–2045CrossRefGoogle Scholar
  45. Tréhu AM, Torres ME, Moore GF, Suess E, Bohrmann G (1999) Temporal and spatial evolution of a gas hydrate-bearing accretionary ridge on the Oregon continental margin. Geology 27(10):939–942CrossRefGoogle Scholar
  46. Tréhu AM, Bangs NL, Arsenault MA, Bohrmann G, Goldfinger C, Johnson JE, Nakamura Y, Torres ME (2002) Complex subsurface plumbing beneath Southern Hydrate Ridge, Oregon continental margin, from high-resolution 3-D seismic reflection and OBS data. In: Proc 4th int conf gas hydrates, Yokohama, Japan, no. 19023, pp 90–96Google Scholar
  47. Tréhu AM, Bohrmann G, Rack FR, Torres ME et al (2003) Proc ODP Init Rep 204, sighted 21 October 2005)
  48. Tréhu AM, Long PE, Torres M, Bohrmann G, Rack FR, Collett TS, Goldberg DS, Milkov AV, Riedel M, Schultheiss P, Bangs NL, Barr SR, Borowski WS, Claypool GE, Delwiche ME, Dickens GR, Gràcia E, Guerin G, Holland M, Johnson JE, Lee YJ, Liu CS, Su X, Teichert B, Tomaru H, Vanneste ME, Watanabe M, Weinberger JL (2004a) Three-dimensional distribution of gas hydrate beneath Southern Hydrate Ridge: constraints from ODP Leg 204. Earth Planet Sci Lett 222:845–862CrossRefGoogle Scholar
  49. Tréhu AM, Flemings PB, Bangs NL, Chevallier J, Gràcia E, Johnson JE, Liu C-S, Riedel M, Torres ME (2004b) Feeding methane vents and gas hydrate deposits at south Hydrate Ridge. Geophys Res Lett 31 L23310Google Scholar
  50. Weinberger JL, Brown KM, Long PE (2005) Painting a picture of gas hydrate distribution with thermal images. Geophys Res Lett 32 L04609Google Scholar
  51. Westbrook GK, Carson B, Musgrave RJ, Shipboard Scientific Party (1994) Proc ODP Init Rep 146, part 1. Ocean Drilling Program, College Station, TXGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Elena Piñero
    • 1
  • Eulàlia Gràcia
    • 1
  • Francisca Martínez-Ruiz
    • 2
  • Juan Cruz Larrasoaña
    • 3
  • Alexis Vizcaino
    • 1
  • Gemma Ercilla
    • 4
  1. 1.Unitat de Tecnologia Marina (CSIC)Centre Mediterrani d’Investigacions Marines i AmbientalsBarcelonaSpain
  2. 2.Instituto Andaluz de Ciencias de la Tierra (CSIC/Universidad de Granada) Facultad de CienciasGranadaSpain
  3. 3.Laboratori de PaleomagnetismeInstitut de Ciències de la Terra “Jaume Almera” (CSIC)/Universitat de BarcelonaBarcelonaSpain
  4. 4.Institut de Ciències del Mar (CSIC), Centre Mediterrani d’Investigacions Marines i AmbientalsBarcelonaSpain

Personalised recommendations