Geo-Marine Letters

, Volume 26, Issue 5, pp 249–263 | Cite as

Geometry and evolution of Holocene transgressive and regressive barriers on the semi-arid coast of NE Brazil

  • Luciano Henrique de Oliveira Caldas
  • Josibel Gomes de OliveiraJr
  • Walter Eugênio de MedeirosEmail author
  • Karl Stattegger
  • Helenice Vital


An integrated study based on ground penetrating radar (GPR) profiles, vibracore descriptions, water-well logs, and radiocarbon dating in a coastal deposit located in the northern region of Rio Grande do Norte State, northeastern Brazil, allowed us to identify Holocene transgressive and regressive barriers. The construction process for the studied coastal barrier is different from that proposed for the Holocene coastal plains along the eastern Brazilian coast, where the hydraulic barrier set up by large rivers for sediments transported by longshore currents has caused a strongly positive longshore sediment imbalance. In the study area, interpretation of the GPR images, within the constraints of vibracores data, allowed us to interpret five radar facies and four radar boundary sequences for these coastal deposits, which were built up during the Holocene coastal evolution of the region. As a result, the geometry of the coastal barrier was reconstructed. Based on barrier geometry, sediment ages, stratigraphic records, and sedimentation patterns, we propose a barrier evolutionary model for the Holocene for the study region. During the Holocene highstand, a transgressive barrier was deposited and a lagoon extended landward. During the sea-level fall soon after the Holocene highstand, the deposition of a regressive barrier (forced regression) started. This deposition was induced by the coastal geometry and high amounts of eolian sediments supplied by east-northeast winds. Also during this period of sea-level fall, the beach face became wider, and thus more subjected to wind action, facilitating the deposition of the first eolian deposits. These sediments were transported to the nearly formed embayment, providing a surplus for the construction of the regressive barrier. During the regressive phase, tidal channels closed and the lagoon became isolated from the open sea. The geometry of both the regressive and transgressive barriers as well as the stratigraphic relation between the sedimentary deposits suggest that the Holocene highstand in this region was not more than 1.4 m above present-day mean sea level.


Holocene Tidal Flat Ground Penetrate Radar Longshore Current Eolian Sediment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This paper is based on the PhD theses of Luciano Caldas (CNPq grant 201041-97.9) and Josibel G. Oliveira Jr. Financial support was provided by the Deutsche Forschungsgemeinschaft (grant number Sta 401/7-2), MARPETRO (FINEP/CTPETRO/PETROBRAS), and Programa Brasil-Alemanha 150-02 (CAPES-DAAD). CAERN (Companhia de Água e Esgotos do Rio Grande do Norte) provided the water-well logs. Walter E. Medeiros and Helenice Vital thank the Brazilian Agency CNPq for research grants (PQ). Werner Tabosa, Jean Carlos and Mofchet Birnenbaum helped during fieldwork. We acknowledge two anonymous referees and the journal editor Monique T. Delafontaine for valuable suggestions and language corrections to the original draft. Aderson do Nascimento is thanked for kindly polishing the final English text.


  1. Angulo RJ, Lessa GC (1997) The Brazilian sea-level curves: a critical review with emphasis on the curves from Paranaguá and Cananéia regions. Mar Geol 140:141–166CrossRefGoogle Scholar
  2. Barreto AMF, Bezerra FHR, Suguio K, Tatumi SH (2000) Algumas evidências de níveis marinhos Pleistocênicos no litoral do Rio Grande do Norte, Brasil. In: Proc XVIII Simp Geologia do Nordeste, Sociedade Brasileira de Geologia, Recife, Boletim 16, pp 16Google Scholar
  3. Barreto AMF, Suguio K, Bezerra FHR (2001) Comparação das curvas de variação do nível relativo do mar no Holoceno do litoral norte-riograndense entre si e com outras curvas do Brasil. In: Proc VIII Congr ABEQUA-Mudanças Globais e o Quaternário, Associação Brasileira de Estudos do Quaternário, Imbé, pp 106–108Google Scholar
  4. Beres M Jr, Haeni FP (1991) Application of ground penetrating radar methods in hydrogeologic studies. Ground Water 29:375–386CrossRefGoogle Scholar
  5. Bezerra FHR, Barreto AMF, Suguio K (2003) Holocene sea-level history on the Rio Grande do Norte State Coast, Brazil. Mar Geol 196:73–89CrossRefGoogle Scholar
  6. Brazilian Navy (2004) Tide tables for Brazilian ports.
  7. Bristow CS, Jol HM (eds) (2003) Ground penetrating radar in sediments. Geol Soc Lond Spec Publ 211Google Scholar
  8. Bristow CS, Chroston PN, Bailey SD (2000) The structure and development of foredunes on a locally prograding coast: insights from ground-penetrating radar surveys, Norfolk, UK. Sedimentology 47:923–944CrossRefGoogle Scholar
  9. Bruun P (1962) Sea level rise as a cause of shore erosion. American Society of Civil Engineers Proceedings, J Waterways Habor Division 88:117–130Google Scholar
  10. Caldas LHO (1996) Geologia costeira da região de São Bento do Norte e Caiçara do Norte, Litoral Norte Potiguar. Rep Universidade Federal do Rio Grande do Norte, NatalGoogle Scholar
  11. Caldas LHO (2002) Late Quaternary coastal evolution of the northern Rio Grande do Norte coast, NE Brazil. PhD Thesis, Institute of Geosciences, University of Kiel, KielGoogle Scholar
  12. Caldas LHO, Stattegger K, Vital H (2006) Holocene sea-level history: evidence from coastal sediments of the northern Rio Grande do Norte coast, NE Brazil. Mar Geol 228:39–53CrossRefGoogle Scholar
  13. Cestaro LA (1994) Os elementos do clima de Galinhos, RN, como recursos naturais à disposição do Homem. Cadernos Norte-rio-grandense de Temas Geográficos 8:13–28Google Scholar
  14. Costa-Neto LXD (1997) Evolucão geológica-geomorfológica recente da plataforma continental interna ao largo do delta do Rio Açu, Macau-RN. MSc Thesis, Universidade Federal Fluminense, NiteróiGoogle Scholar
  15. Curray JR (1964) Transgression and regression. In: Miller RL (ed) Marine Geology Shepard Commemorative volume. MacMillan, London, pp 175–203Google Scholar
  16. Davis RA, Hayes MO (1984) What is a wave-dominated coast? Mar Geol 60:313–329CrossRefGoogle Scholar
  17. Delibrias C, Laborel J (1969) Recent variations of the sea level along the Brazilian coast. Quaternaria 14:45–49Google Scholar
  18. Dominguez JML, Wanless HR (1991) Facies architecture of a falling sea-level strandplain, Doce River coast, Brazil. Spec Publ Int Assoc Sediment 14:259–281Google Scholar
  19. Dominguez JML, Martin L, Bittencourt ACSP (1987) Sea-level history and Quaternary evolution of river mouth associated beach-ridge plains along the east-southeast Brazilian coast: a summary. In: Nummedal D, Pilkey OH, Howard JD (eds) Sea-level fluctuation and coastal evolution. Soc Econ Paleontol Mineral Spec Publ, pp 115–127Google Scholar
  20. Dominguez JML, Bittencourt ACDSP, Martin L (1992) Controls on Quaternary coastal evolution of the east-northeastern coast of Brazil: roles of sea-level history, trade winds and climate. Sediment Geol 80:213–232CrossRefGoogle Scholar
  21. Engels S, Roberts MC (2005) The architecture of prograding sandy-gravel beach ridges formed during the last Holocene highstand: southwestern British Columbia, Canada. J Sediment Res 75:1052–1064CrossRefGoogle Scholar
  22. Fortes F (1987) Mapa geológico da Bacia Potiguar (1:1000.000). PETROBRAS, Natal, Internal RepGoogle Scholar
  23. Gawthorpe RL, Collier REL, Alexander J, Leeder MR, Bridge JS (1993) Ground penetration radar: application to sand body geometry and heterogeneity studies. In: North CP, Prosser DJ (eds) Characterization of fluvial and aeolian reservoirs. Geol Soc Lond Spec Publ 73:421–432Google Scholar
  24. Gorini MA, Dias GTM, Mello SLM, Espíndola CRS, Gallea CG, Dellapiazza H, Castro JRJC (1982) Estudos ambientais para implantação de gasoduto na área de Guamaré (RN). In: Proc XXXII Congr Brasileiro de Geologia, Sociedade Brasileira de Geologia, Salvador, vol 4, pp 1531–1539Google Scholar
  25. Hayes MO (1994) Geology of Holocene barrier system. Springer, Berlin Heidelberg New YorkGoogle Scholar
  26. Kraft JC, Chrzastowski MJ (1985) Coastal stratigraphy sequences. In: Davis RA Jr (ed) Coastal sedimentary environments. Springer, Berlin Heidelberg New YorkGoogle Scholar
  27. Lessa GC, Angulo RJ, Giannini PC, Araújo AD (2000) Stratigraphy and Holocene evolution of a regressive barrier in south Brazil. Mar Geol 165:87–108CrossRefGoogle Scholar
  28. Lima ZMC, Andrade PRO, Xavier Neto P, Vital H, Amaro VE, Medeiros WE (2002) Sand spit from NE Brazil: high-resolution Quaternary analogs for reservoir models. In: Proc AAPG Annu Meet, 10–13 March 2002, Houston, TX, pp 1–7Google Scholar
  29. Martin L, Suguio K, Flexor J-M (1993) As flutuações de nível do mar durante o Quaternário superior e a evolução geológica de “deltas” Brasileiros. Bol IG-USP 15:1–186Google Scholar
  30. Martin L, Dominguez JML, Bittencourt ACSP (2003) Fluctuating Holocene sea-levels in eastern and southeastern Brazil: evidence from multiple fossil and geometric indicators. J Coastal Res 19:101–124Google Scholar
  31. Matos RMD (1994) The Northeastern Brazilian Rift System. Tectonics 11:767–790Google Scholar
  32. Moore LJ, Jol HM, Kruse S, Vanderburgh S, Kaminsky GM (2004) Annual layers revealed by GPR in the subsurface of a prograding coastal barrier, southwest Washington, U.S.A. J Sediment Res 74:690–696Google Scholar
  33. Nadeau M-J, Schleicher M, Grootes PM, Erlenkeuser H, Gottang A, Mous DJW, Sarntheim M, Willkomm H (1997) The Leibniz-Labor AMS facility at the Christian-Albrechts University, Kiel, Germany. Nuclear Instruments Methods Phys Res 123:22–30CrossRefGoogle Scholar
  34. Neal A, Roberts CL (2000) Applications of ground penetrating radar (GPR) to sedimentological and geomorphological studies in coastal environments. In: Pye K, Allen JRL (eds) Coastal and estuarine environments: sedimentology, geomorphology and geoarchaeology. Geol Soc Lond Spec Publ 175:139–171Google Scholar
  35. Neves CAO (1987) Análise regional do trinômio geração-migração-acumulação de hidrocarbonetos na Seqüência Continental Eocretácica da Bacia Potiguar emersa, NE Brasil. MSc Thesis, Universidade Federal de Minas Gerais, Belo HorizonteGoogle Scholar
  36. Nimer E (1989) Climatologia do Brasil. IBGE, Rio de JaneiroGoogle Scholar
  37. Oliveira MIMD, Bagnoli E, Farias CC, Nogueira AMB, Santiago M (1990) Considerações sobre a geometria, petrografia, sedimentologia, diagênese e idade dos beachrocks do Rio Grande do Norte. In: Proc XXXVI Congr Brasileiro de Geologia, Sociedade Brasileira de Geologia, Natal, vol 2, pp 621–634Google Scholar
  38. Oliveira JG Jr, Medeiros WE, Vital H, Xavier Neto P, Stattegger K (2003) GPR imaging of the internal structure of a sand dune in Rio Grande do Norte State, Brazil. J Coastal Res Spec Issue 35:271–278Google Scholar
  39. Rodriguez AB, Meyer CT (2006) Sea-level variation during the Holocene highstand from the morphologic and stratigraphic evolution of Morgan Peninsula, Alabama, USA. J Sediment Res 76:257–269CrossRefGoogle Scholar
  40. Roy P, Cowell PJ, Ferland MA, Thom BG (1995) Wave dominated coasts. In: Carter RWG, Woodroffe CD (eds) Coastal evolution. Cambridge University Press, Cambridge, pp 121–186Google Scholar
  41. Schleicher M, Gootes PM, Nadeau M-J, Scoon A (1998) The carbonate 14C background and its components at the Leibniz AMS facility. Radiocarbon 40:85–93Google Scholar
  42. Silveira IM (2002) Estudo evolutivo das condições ambientais da região costeira do município de Guamaré-RN. MSc Thesis, Universidade Federal do Rio Grande do Norte, NatalGoogle Scholar
  43. Stuiver M, Reimer PJ (1993) Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35:215–230Google Scholar
  44. Stuiver M, Reimer PJ, Bard E, Beck JW, Burr GS, Hughen KA, Kromer B, McCormac G, Van der Pflicht J, Spurk M (1998) INTECAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40:1041–1083Google Scholar
  45. Suguio K, Martin L, Bittencourt ACSP, Dominguez JML, Flexor J-M, Azevedo AEG (1985) Flutuações do nível relativo do mar durante o Quaternário Superior ao longo do litoral Brasileiro e suas implicações na sedimentação costeira. Rev Bras Geociênc 15:273–286Google Scholar
  46. Suguio K, Barreto AMF, Bezerra FHR (2001) Formações Barra de Tabatinga e Touros: evidências de paleoníveis do mar Pleistocênicos da costa Norte-riograndense. In: Proc VIII Congr ABEQUA-Mudanças Globais e o Quaternário, Associação Brasileira de Estudos do Quaternário, Imbé, pp 108–109Google Scholar
  47. Tabosa WF (2000) Dinâmica costeira da Região de São Bento do Norte e Caiçara do Norte-RN. Rep Universidade Federal do Rio Grande do Norte, NatalGoogle Scholar
  48. Tabosa WF, Lima ZMC, Vital H, Guedes IMG (2001) Monitoramento costeiro das praias de São Bento do Norte e Caiçara do Norte-NE/Brasil. In: Proc VII Congr Associação Brasileira de Estudos do Quaternário, Imbé, pp 383–392Google Scholar
  49. Taylor M, Stone GW (1996) Beach ridge: a review. J Coastal Res 12:612–621Google Scholar
  50. Testa V, Bosence DWJ (1999a) Carbonate–siliciclastic sedimentation on high-energy, ocean-facing, tropical ramp, NE Brazil. In: Wright VP, Burchette TP (eds) Carbonate ramps. Geol Soc Lond Spec Publ 149:55–71Google Scholar
  51. Testa V, Bosence DWJ (1999b) Physical and biological controls on the formation of carbonate and siliciclastic bedforms on the north-east Brazilian shelf. Sedimentology 46:279–301CrossRefGoogle Scholar
  52. Van Andel TH, Laborel J (1964) Recent high relative sea level stand near Recife, Brazil. Science 145:580–581CrossRefGoogle Scholar
  53. Vianna ML, Solewicz R (1988) Feições fisiográficas submarinas da plataforma continental do RN visíveis por imagens de satélite. In: Proc Simp Sensoriamento Remoto, Universidade Federal do Rio Grande do Norte, Natal, vol 3, pp 581–587Google Scholar
  54. Vilaça JG, Cunha EMS, Silveira IM (1991) Levantamento hidrogeológico do Município de Galinhos. In: Proc IV Congr Nordestino de Ecologia, Sociedade Nordestina de Ecologia, Recife, pp 56Google Scholar
  55. Vital H, Stattegger V, Tabosa WF, Riedel K (2003) Why does erosion occur on the Northeastern coast of Brazil? The Caiçara do Norte beach example. J Coastal Res 35:525–529Google Scholar
  56. Xavier Neto P, Medeiros WE (2006) A practical approach to correct attenuation effects in GPR data. J Appl Geophys 59:140–151CrossRefGoogle Scholar
  57. Ybert J-P, Bissa WM, Catharino ELM, Kutner M (2003) Environmental and sea-level variations on the southeastern Brazilian coast during the Late Holocene with comments on prehistoric human occupation. Palaeogeogr Palaeoclimatol Palaeoecol 189:11–24CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Luciano Henrique de Oliveira Caldas
    • 1
    • 3
  • Josibel Gomes de OliveiraJr
    • 1
    • 4
  • Walter Eugênio de Medeiros
    • 1
    Email author
  • Karl Stattegger
    • 2
  • Helenice Vital
    • 1
  1. 1.Programa de Pesquisa e Pós-graduação em Geodinâmica e GeofísicaUniversidade Federal do Rio Grande do Norte, Campus Universitário UFRNNatalBrazil
  2. 2.Institute of GeoscienceUniversity of KielKielGermany
  3. 3.PETROBRASRio de JaneiroBrazil
  4. 4.CGG do Brasil LtdaRio de JaneiroBrazil

Personalised recommendations