Skip to main content
Log in

Element-free Galerkin analysis of MHD duct flow problems at arbitrary and high Hartmann numbers

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

A stabilized element-free Galerkin (EFG) method is proposed in this paper for numerical analysis of the generalized steady MHD duct flow problems at arbitrary and high Hartmann numbers up to \(10^{16}\). Computational formulas of the EFG method for MHD duct flows are derived by using Nitsche’s technique to facilitate the implementation of Dirichlet boundary conditions. The reproducing kernel gradient smoothing integration technique is incorporated into the EFG method to accelerate the solution procedure impaired by Gauss quadrature rules. A stabilized Nitsche-type EFG weak formulation of MHD duct flows is devised to enhance the performance damaged by high Hartmann numbers. Several benchmark MHD duct flow problems are solved to testify the stability and the accuracy of the present EFG method. Numerical results show that the range of the Hartmann number Ha in the present EFG method is \(1\le Ha\le 10^{16}\), which is much larger than that in existing numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Nesliturk AI, Tezer-Sezgin M (2005) The finite element method for MHD flow at high Hartmann numbers. Comput Methods Appl Mech Eng 194:1201–1224

    Article  MathSciNet  Google Scholar 

  2. Hsieh PW, Yang SY (2009) A bubble-stabilized least-squares finite element method for steady MHD duct flow problems at high Hartmann numbers. J Comput Phys 228:8301–8320

    Article  MathSciNet  Google Scholar 

  3. Zhao JK, Mao SP, Zheng WY (2016) Anisotropic adaptive finite element method for magnetohydrodynamic flow at high Hartmann numbers. Appl Math Mech Engl Ed 37:1479–1500

    Article  MathSciNet  Google Scholar 

  4. Hsieh PW, Yang SY (2010) Two new upwind difference schemes for a coupled system of convection-diffusion equations arising from the steady MHD duct flow problems. J Comput Phys 229:9216–9234

    Article  MathSciNet  Google Scholar 

  5. Li Y, Tian ZF (2012) An exponential compact difference scheme for solving 2D steady magnetohydrodynamic (MHD) duct flow problems. J Comput Phys 231:5443–5468

    Article  Google Scholar 

  6. Zhou K, Ni SH, Tian ZF (2015) Exponential high-order compact scheme on nonuniform grids for the steady MHD duct flow problems with high Hartmann numbers. Comput Phys Commun 196:194–211

    Article  Google Scholar 

  7. Bozkaya C, Tezer-Sezgin M (2012) A direct BEM solution to MHD flow in electrodynamically coupled rectangular channels. Comput Fluids 66:177–182

    Article  MathSciNet  Google Scholar 

  8. Hosseinzadeh H, Dehghan M, Mirzaei D (2013) The boundary elements method for magneto-hydrodynamic (MHD) channel flows at high Hartmann numbers. Appl Math Model 37:2337–2351

    Article  MathSciNet  Google Scholar 

  9. Shercliff JA (1953) Steady motion of conducting fluids in pipes under transverse magnetic fields. Proc Camb Philos Soc 49:136–144

    Article  MathSciNet  Google Scholar 

  10. Hsieh PW, Shih Y, Yang SY (2011) A tailored finite point method for solving steady MHD duct flow problems with boundary layers. Commun Comput Phys 10:161–182

    Article  MathSciNet  Google Scholar 

  11. Cai XH, Su GH, Qiu SZ (2011) Local radial point interpolation method for the fully developed magnetohydrodynamic flow. Appl Math Comput 217:4529–4539

    MathSciNet  Google Scholar 

  12. Bourantas GC, Skouras ED, Loukopoulos VC, Nikiforidis GC (2009) An accurate, stable and efficient domain-type meshless method for the solution of MHD flow problems. J Comput Phys 228:8135–8160

    Article  MathSciNet  Google Scholar 

  13. Cai XH, Su GH, Qiu SZ (2011) Upwinding meshfree point collocation method for steady MHD flow with arbitrary orientation of applied magnetic field at high Hartmann numbers. Comput Fluids 44:153–161

    Article  MathSciNet  Google Scholar 

  14. Dehghan M, Mohammadi V (2015) The method of variably scaled radial kernels for solving two-dimensional magnetohydrodynamic (MHD) equations using two discretizations. Comput Math Appl 70:2292–2315

    Article  MathSciNet  Google Scholar 

  15. Tatari M, Shahriari M, Raoof M (2016) Numerical modeling of magneto-hydrodynamics flows using reproducing kernel particle method. Int J Numer Model 29:548–564

    Article  Google Scholar 

  16. Bourantas GC, Loukopoulos VC, Joldes GR, Wittek A, Miller K (2019) An explicit meshless point collocation method for electrically driven magnetohydrodynamics (MHD) flow. Appl Math Comput 348:215–233

    MathSciNet  Google Scholar 

  17. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256

    Article  MathSciNet  Google Scholar 

  18. Verardi SLL, Machado JM, Cardoso JR (2002) The element-free Galerkin method applied to the study of fully developed magnetohydrodynamic duct flows. IEEE Trans Magn 38:941–944

    Article  Google Scholar 

  19. Dehghan M, Abbaszadeh M (2019) Error analysis and numerical simulation of magnetohydrodynamics (MHD) equation based on the interpolating element free Galerkin (IEFG) method. Appl Numer Math 137:252–273

    Article  MathSciNet  Google Scholar 

  20. Zhang L, Ouyang J, Zhang XH (2008) The two-level element free Galerkin method for MHD flow at high Hartmann numbers. Phys Lett A 372:5625–5638

    Article  Google Scholar 

  21. Zhang L, Ouyang J, Zhang XH (2013) The variational multiscale element free Galerkin method for MHD flows at high Hartmann numbers. Comput Phys Commun 184:1106–1118

    Article  MathSciNet  Google Scholar 

  22. Jannesari Z, Tatari M (2022) Magnetohydrodynamics (MHD) simulation via an adaptive element free Galerkin method. Eng Comput 38:679–693

    Article  Google Scholar 

  23. Zhang Z, Hao SY, Liew KM, Cheng YM (2013) The improved element-free Galerkin method for two-dimensional elastodynamics problems. Eng Anal Bound Elem 37:1576–1584

    Article  MathSciNet  Google Scholar 

  24. Cheng H, Peng MJ, Cheng YM (2020) The hybrid complex variable element-free Galerkin method for 3D elasticity problems. Eng Struct 219:110835

    Article  Google Scholar 

  25. Wu Q, Peng MJ, Cheng YM (2022) The interpolating dimension splitting element-free Galerkin method for 3D potential problems. Eng Comput 38:2703–2717

    Article  Google Scholar 

  26. Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin meshfree methods. Int J Numer Methods Eng 50:435–466

    Article  Google Scholar 

  27. Babuška I, Banerjee U, Osborn JE, Zhang QH (2009) Effect of numerical integration on meshless methods. Comput Methods Appl Mech Eng 198:2886–2897

    Article  MathSciNet  Google Scholar 

  28. Duan QL, Gao X, Wang BB, Li XK, Zhang HW (2014) A four-point integration scheme with quadratic exactness for three-dimensional element-free Galerkin method based on variationally consistency formulation. Comput Methods Appl Mech Eng 280:84–116

    Article  Google Scholar 

  29. Wang DD, Wu JC (2016) An efficient nesting sub-domain gradient smoothing integration algorithm with quadratic exactness for Galerkin meshfree methods. Comput Methods Appl Mech Eng 298:485–519

    Article  MathSciNet  Google Scholar 

  30. Wang DD, Wu JC (2019) An inherently consistent reproducing kernel gradient smoothing framework toward efficient Galerkin meshfree formulation with explicit quadrature. Comput Methods Appl Mech Eng 349:628–672

    Article  MathSciNet  Google Scholar 

  31. Wu JC, Wang DD (2021) An accuracy analysis of Galerkin meshfree methods accounting for numerical integration. Comput Methods Appl Mech Eng 375:113631

    Article  MathSciNet  Google Scholar 

  32. Li XL (2023) Theoretical analysis of the reproducing kernel gradient smoothing integration technique in Galerkin meshless methods. J Comput Math 41(3):483–506

    Article  MathSciNet  Google Scholar 

  33. Wang JR, Wu JC, Wang DD (2020) A quasi-consistent integration method for efficient meshfree analysis of Helmholtz problems with plane wave basis functions. Eng Anal Bound Elem 110:42–55

    Article  MathSciNet  Google Scholar 

  34. Du HH, Wu JC, Wang DD, Chen J (2022) A unified reproducing kernel gradient smoothing Galerkin meshfree approach to strain gradient elasticity. Comput Mech 70:73–100

    Article  MathSciNet  Google Scholar 

  35. Li XL, Li SL (2023) Effect of an efficient numerical integration technique on the element-free Galerkin method. Appl Numer Math 193:204–225

    Article  MathSciNet  Google Scholar 

  36. Li XL (2023) Element-free Galerkin analysis of Stokes problems using the reproducing kernel gradient smoothing integration. J Sci Comput 96(2):43

    Article  MathSciNet  Google Scholar 

  37. Li XL (2024) A weak Galerkin meshless method for incompressible Navier–Stokes equations. J Comput Appl Math 445:115823

    Article  MathSciNet  Google Scholar 

  38. Babuška I, Banerjee U, Osborn JE (2003) Survey of meshless and generalized finite element methods: a unified approach. Acta Numer. 12:1–125

    Article  MathSciNet  Google Scholar 

  39. Fernandez-Mendez S, Huerta A (2004) Imposing essential boundary conditions in mesh-free methods. Comput Methods Appl Mech Eng 193:1257–1275

    Article  MathSciNet  Google Scholar 

  40. Li XL, Li SL (2023) Meshless Galerkin analysis of the generalized Stokes problem. Comput Math Appl 144:164–181

    Article  MathSciNet  Google Scholar 

  41. Li XL (2023) A stabilized element-free Galerkin method for the advection-diffusion-reaction problem. Appl Math Lett 146:108831

    Article  MathSciNet  Google Scholar 

  42. Hauke G (2002) A simple subgrid scale stabilized method for the advection-diffusion-reaction equation. Comput Methods Appl Mech Eng 191:2925–2947

    Article  MathSciNet  Google Scholar 

  43. Codina R (1998) Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Comput Methods Appl Mech Eng 156:185–210

    Article  MathSciNet  Google Scholar 

  44. Lancaster P, Salkauskas K (1981) Surface generated by moving least squares methods. Math Comput 37:141–158

    Article  MathSciNet  Google Scholar 

  45. Li XL (2016) Error estimates for the moving least-square approximation and the element-free Galerkin method in \(n\)-dimensional spaces. Appl Numer Math 99:77–97

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Chongqing, China (Grant Nos. cstc2021jcyj-jqX0011, CSTB2022NSCQ-LZX0016), and the National Natural Science Foundation of China (Grant No. 11971085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, S. Element-free Galerkin analysis of MHD duct flow problems at arbitrary and high Hartmann numbers. Engineering with Computers (2024). https://doi.org/10.1007/s00366-024-01969-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00366-024-01969-1

Keywords

Navigation