Abstract
Quadrilateral meshes offer certain advantages compared to triangular ones, such as reduced number of elements and alignment with problem-specific directions. We present a pipeline for the generation of quadrilateral meshes on complex geometries. It is based on two key components: robust surface meshing and efficient indirect conversion of a triangular mesh to an all-quad one. The input is a valid geometric surface mesh, i.e., a triangulation that accurately represents the geometry of the model. A right-angled triangular surface mesh is initially created by continuously modifying the input mesh while always preserving its topological validity. The main advantages of our local mesh modification-based approach are to (i) allow the generation of meshes that are globally aligned with a given direction field and (ii) to reliably handle non-manifold feature edges (in multi-volume models) and small features. The final quadrilateral mesh is obtained by merging pairs of triangles into quadrilaterals. We develop a novel bipartite labeling scheme in order to identify and correct inconsistent pairings. The procedure is based on local operations and is much more efficient than previous global strategies for tri-to-quad conversion. The whole pipeline is tested on a large number of models with diverse characteristics.
Similar content being viewed by others
References
Geuzaine C, Remacle J-F (2009) Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331. https://doi.org/10.1002/nme.2579
Borouchaki H, Laug P, George P-L (2000) Parametric surface meshing using a combined advancing-front generalized Delaunay approach. Int J Numer Methods Eng 49(1–2):233–259. https://doi.org/10.1002/1097-0207(20000910/20)49:1/2h233::AID-NME931i3.0.CO;2-G
Lo S (2015) Finite element mesh generation
Lo SH (1988) Finite element mesh generation over curved surfaces. Comput Struct 29(5):731–742. https://doi.org/10.1016/0045-7949(88)90341-0
Sheng X, Hirsch BE (1992) Triangulation of trimmed surfaces in parametric space. Comput Aided Des 24(8):437–444. https://doi.org/10.1016/0010-4485(92)90011-X
Shimada K, Gossard DC (1998) Automatic triangular mesh generation of trimmed parametric surfaces for finite element analysis. Comput Aided Geom Des 15(3):199–222. https://doi.org/10.1016/S0167-8396(97)00037-X
Floater MS, Hormann K (2005) Surface parameterization: a tutorial and survey. In: Dodgson NA, Floater MS, Sabin MA (eds) Advances in multiresolution for geometric modelling. Springer-Verlag, Berlin/Heidelberg, pp 157–186. https://doi.org/10.1007/3-540-26808-1_9
Remacle J-F, Geuzaine C, Compère G, Marchandise E (2010) High-quality surface remeshing using harmonic maps. Int J Numer Methods Eng 83(4):403–425. arXiv:10.1002/nme.2824. https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2824. https://doi.org/10.1002/nme.2824
Beaufort P-A, Geuzaine C, Remacle J-F (2020) Automatic surface mesh generation for discrete models—a complete and automatic pipeline based on reparametrization. J Comput Phys 417:109575 arXiv:2001.02542. https://doi.org/10.1016/j.jcp.2020.109575
Shephard MS, Georges MK (1991) Automatic three-dimensional mesh generation by the finite octree technique. Int J Numer Methods Eng 32(4):709–749. https://doi.org/10.1002/nme.1620320406
Frey PJ, Marechal L (1998) Fast adaptive quadtree mesh generation. In: Proceedings of the seventh international meshing roundtable, pp 211–224
Löhner R, Parikh P (1988) Generation of three-dimensional unstructured grids by the advancing-front method. Int J Numer Methods Fluids 8(10):1135–1149. https://doi.org/10.1002/fld.1650081003
Lau TS, Lo SH (1996) Finite element mesh generation over analytical curved surfaces. Comput Struct 59(2):301–309. https://doi.org/10.1016/0045-7949(95)00261-8
Baker TJ (1989) Automatic mesh generation for complex three-dimensional regions using a constrained Delaunay triangulation. Eng Comput 5(3–4):161–175. https://doi.org/10.1007/BF02274210
Borouchaki H, George PL, Hecht F, Laug P, Saltel E (1997) Delaunay mesh generation governed by metric specifications Part I. Algorithms. Finite Elem Anal Des 25(1–2):61–83. https://doi.org/10.1016/S0168-874X(96)00057-1
Wang D, Hassan O, Morgan K, Weatherill N (2006) EQSM: an efficient high quality surface grid generation method based on remeshing. Comput Methods Appl Mech Eng 195(41–43):5621–5633. https://doi.org/10.1016/j.cma.2005.10.028
Béchet E, Cuilliere J-C, Trochu F (2002) Generation of a finite element MESH from stereolithography (STL) files. Comput Aided Des 34(1):1–17. https://doi.org/10.1016/S0010-4485(00)00146-9
Baehmann PL, Wittchen SL, Shephard M, Grice KR, Yerry M (1987) Robust, geometrically based, automatic two-dimensional mesh generation. Int J Numer Methods Eng 24:1043–1078
Schneiders R (1996) A grid-based algorithm for the generation of hexahedral element meshes. Eng Comput 12(3–4):168–177. https://doi.org/10.1007/BF01198732
Frey P, Marechal L (2000) Fast adaptive quadtree mesh generation. In: Proceedings of the 7th international meshing roundtable
Blacker TD, Stephenson MB (1991) Paving: a new approach to automated quadrilateral mesh generation. Int J Numer Methods Eng 32(4):811–847. https://doi.org/10.1002/nme.1620320410
Mitchell SA, Mohammed MA, Mahmoud AH, Ebeida MS (2014) Delaunay quadrangulation by two-coloring vertices. Proc Eng 82:364–376. https://doi.org/10.1016/j.proeng.2014.10.397
Lee CK, Lo SH (1994) A new scheme for the generation of a graded quadrilateral mesh. Comput Struct 52(5):847–857. https://doi.org/10.1016/0045-7949(94)90070-1
Borouchaki H, Frey PJ (1998) Adaptive triangular-quadrilateral mesh generation. Int J Numer Methods Eng 41(5):915–934. https://doi.org/10.1002/(SICI)1097-0207(19980315)41:5h915::AID-NME318i3.0.CO;2-Y
Owen S, Staten M, Canann S, Saigal S (1999) Q-Morph: an indirect approach to advancing front quad meshing. Int J Numer Methods Eng 44(9):1317–1340. https://doi.org/10.1002/(SICI)1097-0207(19990330)44:9h1317::AID-NME532i3.0.CO;2-N
Remacle J-F, Lambrechts J, Seny B, Marchandise E, Johnen A, Geuzainet C (2012) Blossom-Quad: a non-uniform quadrilateral mesh generator using a minimum-cost perfect-matching algorithm. Int J Numer Methods Eng 89(9):1102–1119. https://doi.org/10.1002/nme.3279
Remacle J-F, Henrotte F, Carrier-Baudouin T, Béchet E, Marchandise E, Geuzaine C, Mouton T (2013) A frontal Delaunay quad mesh generator using the L \(\infty \) norm. Int J Numer Methods Eng 94(5):494–512. https://doi.org/10.1002/nme.4458
Baudouin TC, Remacle J-F, Marchandise É, Henrotte F, Geuzaine C (2014) A frontal approach to hex-dominant mesh generation. Adv Model Simul Eng Sci 1(1):8–8. https://doi.org/10.1186/2213-7467-1-8
Bommes D, Lévy B, Pietroni N, Puppo E, Silva C, Tarini M, Zorin D (2013) Quad-mesh generation and processing: a survey: quad-mesh generation and processing. Comput Graphics Forum 32(6):51–76. https://doi.org/10.1111/cgf.12014
Ray N, Li WC, Lévy B, Sheffer A, Alliez P (2006) Periodic global parameterization. ACM Trans Graph 25(4):1460–1485. https://doi.org/10.1145/1183287.1183297
Palacios J, Zhang E (2007) Rotational symmetry field design on surfaces. ACM Trans Graph 26(3):55. https://doi.org/10.1145/1276377.1276446
Beaufort P-A, Lambrechts J, Henrotte F, Geuzaine C, Remacle J-F (2017) Computing cross fields A PDE approach based on the Ginzburg-Landau theory. In: 26th International meshing roundtable, vol. 203, IMR26, 18-21 September 2017, Barcelona, Spain pp 219–231. https://doi.org/10.1016/j.proeng.2017.09.799
Kettner L (1998) Designing a data structure for polyhedral surfaces. In: Proceedings of the fourteenth annual symposium on computational geometry. SCG ’98, pp 146–154. ACM, New York. https://doi.org/10.1145/276884.276901
Shamir A (2008) A survey on mesh segmentation techniques. Comput Graph Forum 27(6):1539–1556. https://doi.org/10.1111/j.1467-8659.2007.01103.x
Vieira M, Shimada K (2005) Surface mesh segmentation and smooth surface extraction through region growing. Comput Aided Geometr Des 22(8):771–792. https://doi.org/10.1016/j.cagd.2005.03.006
Sunil VB, Pande SS (2008) Automatic recognition of features from freeform surface CAD models. Comput Aided Des 40(4):502–517. https://doi.org/10.1016/j.cad.2008.01.006
Thakur A, Banerjee AG, Gupta SK (2009) A survey of CAD model simplification techniques for physics-based simulation applications. Comput Aided Des 41(2):65–80. https://doi.org/10.1016/j.cad.2008.11.009
Reberol M, Georgiadis C, Remacle J-F (2021) Quasi-structured quadrilateral meshing in Gmsh—a robust pipeline for complex CAD models. arXiv:2103.04652 [cs]. arXiv:2103.04652 [cs]
Georgiadis C, Beaufort P-A, Lambrechts J, Remacle J-F (2017) High quality mesh generation using cross and asterisk fields: application on coastal domains. In: 26th International meshing roundtable, research notes, Barcelona
Frey PJ, George PL (2008) Mesh generation: application to finite elements, 2nd edn. Wiley, London
Devillers O, Pion S, Teillaud M (2001) Walking in a triangulation. In: Proceedings of the seventeenth annual symposium on computational geometry. SCG ’01, pp 106–114. Association for Computing Machinery, New York. https://doi.org/10.1145/378583.378643
Beckmann N, Kriegel H-P, Schneider R, Seeger B (1990) The R*-tree: an efficient and robust access method for points and rectangles. ACM SIGMOD Record 19(2):322–331. https://doi.org/10.1145/93605.98741
Ray N, Sokolov D, Reberol M, Ledoux F, Lévy B (2018) Hex-dominant meshing: mind the gap! Comput Aided Des 102:94–103. https://doi.org/10.1016/j.cad.2018.04.012
Catmull E, Clark J (1978) Recursively generated B-spline surfaces on arbitrary topological meshes. Comput Aided Des 10(6):350–355. https://doi.org/10.1016/0010-4485(78)90110-0
Bondy JA, Murty USR (1976) Graph theory with applications, p 264. Macmillan London, London
Stimpson CJ, St NM, Ernst CD, St NM, Pébay PP, Thompson D (2007) The verdict geometric quality library. Technical Report SAND2007-1751, SANDIA
Knupp PM (1999) Winslow smoothing on two-dimensional unstructured meshes. Eng Comput 15(3):263–268. https://doi.org/10.1007/s003660050021
Koch S, Matveev A, Jiang Z, Williams F, Artemov A, Burnaev E, Alexa M, Zorin D, Panozzo D (2019) ABC: a big CAD model dataset for geometric deep learning. In: The IEEE conference on computer vision and pattern recognition (CVPR)
Ledoux F MAMBO Dataset. https://gitlab.com/franck.ledoux/mambo
Zhou Q, Jacobson A (2016) Thingi10K: a dataset of 10,000 3D-Printing models. arXiv preprint arXiv:1605.04797. arXiv:1605.04797
Livesu M, Pietroni N, Puppo E, Sheffer A, Cignoni P (2020) LoopyCuts: practical feature-preserving block decomposition for strongly hex-dominant meshing. ACM Transactions on Graphics. https://doi.org/10.1145/3386569.3392472
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
This study was carried out in the framework of the research project ‘Hextreme,’ funded by the European Research Council (ERC-2015-AdG-694020) and hosted at the Université catholique de Louvain. The authors have no competing interests to declare that are relevant to the content of this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Georgiadis, C., Reberol, M. & Remacle, JF. Indirect all-quadrilateral meshing based on bipartite topological labeling. Engineering with Computers 38, 4731–4747 (2022). https://doi.org/10.1007/s00366-022-01740-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00366-022-01740-4