Skip to main content
Log in

Indirect all-quadrilateral meshing based on bipartite topological labeling

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Quadrilateral meshes offer certain advantages compared to triangular ones, such as reduced number of elements and alignment with problem-specific directions. We present a pipeline for the generation of quadrilateral meshes on complex geometries. It is based on two key components: robust surface meshing and efficient indirect conversion of a triangular mesh to an all-quad one. The input is a valid geometric surface mesh, i.e., a triangulation that accurately represents the geometry of the model. A right-angled triangular surface mesh is initially created by continuously modifying the input mesh while always preserving its topological validity. The main advantages of our local mesh modification-based approach are to (i) allow the generation of meshes that are globally aligned with a given direction field and (ii) to reliably handle non-manifold feature edges (in multi-volume models) and small features. The final quadrilateral mesh is obtained by merging pairs of triangles into quadrilaterals. We develop a novel bipartite labeling scheme in order to identify and correct inconsistent pairings. The procedure is based on local operations and is much more efficient than previous global strategies for tri-to-quad conversion. The whole pipeline is tested on a large number of models with diverse characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Geuzaine C, Remacle J-F (2009) Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331. https://doi.org/10.1002/nme.2579

    Article  MathSciNet  MATH  Google Scholar 

  2. Borouchaki H, Laug P, George P-L (2000) Parametric surface meshing using a combined advancing-front generalized Delaunay approach. Int J Numer Methods Eng 49(1–2):233–259. https://doi.org/10.1002/1097-0207(20000910/20)49:1/2h233::AID-NME931i3.0.CO;2-G

    Article  MathSciNet  MATH  Google Scholar 

  3. Lo S (2015) Finite element mesh generation

  4. Lo SH (1988) Finite element mesh generation over curved surfaces. Comput Struct 29(5):731–742. https://doi.org/10.1016/0045-7949(88)90341-0

    Article  MATH  Google Scholar 

  5. Sheng X, Hirsch BE (1992) Triangulation of trimmed surfaces in parametric space. Comput Aided Des 24(8):437–444. https://doi.org/10.1016/0010-4485(92)90011-X

    Article  MATH  Google Scholar 

  6. Shimada K, Gossard DC (1998) Automatic triangular mesh generation of trimmed parametric surfaces for finite element analysis. Comput Aided Geom Des 15(3):199–222. https://doi.org/10.1016/S0167-8396(97)00037-X

    Article  MathSciNet  MATH  Google Scholar 

  7. Floater MS, Hormann K (2005) Surface parameterization: a tutorial and survey. In: Dodgson NA, Floater MS, Sabin MA (eds) Advances in multiresolution for geometric modelling. Springer-Verlag, Berlin/Heidelberg, pp 157–186. https://doi.org/10.1007/3-540-26808-1_9

    Chapter  Google Scholar 

  8. Remacle J-F, Geuzaine C, Compère G, Marchandise E (2010) High-quality surface remeshing using harmonic maps. Int J Numer Methods Eng 83(4):403–425. arXiv:10.1002/nme.2824. https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2824. https://doi.org/10.1002/nme.2824

  9. Beaufort P-A, Geuzaine C, Remacle J-F (2020) Automatic surface mesh generation for discrete models—a complete and automatic pipeline based on reparametrization. J Comput Phys 417:109575 arXiv:2001.02542. https://doi.org/10.1016/j.jcp.2020.109575

  10. Shephard MS, Georges MK (1991) Automatic three-dimensional mesh generation by the finite octree technique. Int J Numer Methods Eng 32(4):709–749. https://doi.org/10.1002/nme.1620320406

    Article  MATH  Google Scholar 

  11. Frey PJ, Marechal L (1998) Fast adaptive quadtree mesh generation. In: Proceedings of the seventh international meshing roundtable, pp 211–224

  12. Löhner R, Parikh P (1988) Generation of three-dimensional unstructured grids by the advancing-front method. Int J Numer Methods Fluids 8(10):1135–1149. https://doi.org/10.1002/fld.1650081003

    Article  MATH  Google Scholar 

  13. Lau TS, Lo SH (1996) Finite element mesh generation over analytical curved surfaces. Comput Struct 59(2):301–309. https://doi.org/10.1016/0045-7949(95)00261-8

    Article  MathSciNet  MATH  Google Scholar 

  14. Baker TJ (1989) Automatic mesh generation for complex three-dimensional regions using a constrained Delaunay triangulation. Eng Comput 5(3–4):161–175. https://doi.org/10.1007/BF02274210

    Article  Google Scholar 

  15. Borouchaki H, George PL, Hecht F, Laug P, Saltel E (1997) Delaunay mesh generation governed by metric specifications Part I. Algorithms. Finite Elem Anal Des 25(1–2):61–83. https://doi.org/10.1016/S0168-874X(96)00057-1

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang D, Hassan O, Morgan K, Weatherill N (2006) EQSM: an efficient high quality surface grid generation method based on remeshing. Comput Methods Appl Mech Eng 195(41–43):5621–5633. https://doi.org/10.1016/j.cma.2005.10.028

    Article  MATH  Google Scholar 

  17. Béchet E, Cuilliere J-C, Trochu F (2002) Generation of a finite element MESH from stereolithography (STL) files. Comput Aided Des 34(1):1–17. https://doi.org/10.1016/S0010-4485(00)00146-9

    Article  Google Scholar 

  18. Baehmann PL, Wittchen SL, Shephard M, Grice KR, Yerry M (1987) Robust, geometrically based, automatic two-dimensional mesh generation. Int J Numer Methods Eng 24:1043–1078

    Article  MATH  Google Scholar 

  19. Schneiders R (1996) A grid-based algorithm for the generation of hexahedral element meshes. Eng Comput 12(3–4):168–177. https://doi.org/10.1007/BF01198732

    Article  Google Scholar 

  20. Frey P, Marechal L (2000) Fast adaptive quadtree mesh generation. In: Proceedings of the 7th international meshing roundtable

  21. Blacker TD, Stephenson MB (1991) Paving: a new approach to automated quadrilateral mesh generation. Int J Numer Methods Eng 32(4):811–847. https://doi.org/10.1002/nme.1620320410

    Article  MATH  Google Scholar 

  22. Mitchell SA, Mohammed MA, Mahmoud AH, Ebeida MS (2014) Delaunay quadrangulation by two-coloring vertices. Proc Eng 82:364–376. https://doi.org/10.1016/j.proeng.2014.10.397

    Article  Google Scholar 

  23. Lee CK, Lo SH (1994) A new scheme for the generation of a graded quadrilateral mesh. Comput Struct 52(5):847–857. https://doi.org/10.1016/0045-7949(94)90070-1

    Article  MATH  Google Scholar 

  24. Borouchaki H, Frey PJ (1998) Adaptive triangular-quadrilateral mesh generation. Int J Numer Methods Eng 41(5):915–934. https://doi.org/10.1002/(SICI)1097-0207(19980315)41:5h915::AID-NME318i3.0.CO;2-Y

    Article  MathSciNet  MATH  Google Scholar 

  25. Owen S, Staten M, Canann S, Saigal S (1999) Q-Morph: an indirect approach to advancing front quad meshing. Int J Numer Methods Eng 44(9):1317–1340. https://doi.org/10.1002/(SICI)1097-0207(19990330)44:9h1317::AID-NME532i3.0.CO;2-N

    Article  MATH  Google Scholar 

  26. Remacle J-F, Lambrechts J, Seny B, Marchandise E, Johnen A, Geuzainet C (2012) Blossom-Quad: a non-uniform quadrilateral mesh generator using a minimum-cost perfect-matching algorithm. Int J Numer Methods Eng 89(9):1102–1119. https://doi.org/10.1002/nme.3279

    Article  MathSciNet  MATH  Google Scholar 

  27. Remacle J-F, Henrotte F, Carrier-Baudouin T, Béchet E, Marchandise E, Geuzaine C, Mouton T (2013) A frontal Delaunay quad mesh generator using the L \(\infty \) norm. Int J Numer Methods Eng 94(5):494–512. https://doi.org/10.1002/nme.4458

    Article  MathSciNet  MATH  Google Scholar 

  28. Baudouin TC, Remacle J-F, Marchandise É, Henrotte F, Geuzaine C (2014) A frontal approach to hex-dominant mesh generation. Adv Model Simul Eng Sci 1(1):8–8. https://doi.org/10.1186/2213-7467-1-8

    Article  Google Scholar 

  29. Bommes D, Lévy B, Pietroni N, Puppo E, Silva C, Tarini M, Zorin D (2013) Quad-mesh generation and processing: a survey: quad-mesh generation and processing. Comput Graphics Forum 32(6):51–76. https://doi.org/10.1111/cgf.12014

    Article  Google Scholar 

  30. Ray N, Li WC, Lévy B, Sheffer A, Alliez P (2006) Periodic global parameterization. ACM Trans Graph 25(4):1460–1485. https://doi.org/10.1145/1183287.1183297

    Article  Google Scholar 

  31. Palacios J, Zhang E (2007) Rotational symmetry field design on surfaces. ACM Trans Graph 26(3):55. https://doi.org/10.1145/1276377.1276446

    Article  Google Scholar 

  32. Beaufort P-A, Lambrechts J, Henrotte F, Geuzaine C, Remacle J-F (2017) Computing cross fields A PDE approach based on the Ginzburg-Landau theory. In: 26th International meshing roundtable, vol. 203, IMR26, 18-21 September 2017, Barcelona, Spain pp 219–231. https://doi.org/10.1016/j.proeng.2017.09.799

  33. Kettner L (1998) Designing a data structure for polyhedral surfaces. In: Proceedings of the fourteenth annual symposium on computational geometry. SCG ’98, pp 146–154. ACM, New York. https://doi.org/10.1145/276884.276901

  34. Shamir A (2008) A survey on mesh segmentation techniques. Comput Graph Forum 27(6):1539–1556. https://doi.org/10.1111/j.1467-8659.2007.01103.x

    Article  MATH  Google Scholar 

  35. Vieira M, Shimada K (2005) Surface mesh segmentation and smooth surface extraction through region growing. Comput Aided Geometr Des 22(8):771–792. https://doi.org/10.1016/j.cagd.2005.03.006

    Article  MathSciNet  MATH  Google Scholar 

  36. Sunil VB, Pande SS (2008) Automatic recognition of features from freeform surface CAD models. Comput Aided Des 40(4):502–517. https://doi.org/10.1016/j.cad.2008.01.006

    Article  Google Scholar 

  37. Thakur A, Banerjee AG, Gupta SK (2009) A survey of CAD model simplification techniques for physics-based simulation applications. Comput Aided Des 41(2):65–80. https://doi.org/10.1016/j.cad.2008.11.009

    Article  Google Scholar 

  38. Reberol M, Georgiadis C, Remacle J-F (2021) Quasi-structured quadrilateral meshing in Gmsh—a robust pipeline for complex CAD models. arXiv:2103.04652 [cs]. arXiv:2103.04652 [cs]

  39. Georgiadis C, Beaufort P-A, Lambrechts J, Remacle J-F (2017) High quality mesh generation using cross and asterisk fields: application on coastal domains. In: 26th International meshing roundtable, research notes, Barcelona

  40. Frey PJ, George PL (2008) Mesh generation: application to finite elements, 2nd edn. Wiley, London

    Book  MATH  Google Scholar 

  41. Devillers O, Pion S, Teillaud M (2001) Walking in a triangulation. In: Proceedings of the seventeenth annual symposium on computational geometry. SCG ’01, pp 106–114. Association for Computing Machinery, New York. https://doi.org/10.1145/378583.378643

  42. Beckmann N, Kriegel H-P, Schneider R, Seeger B (1990) The R*-tree: an efficient and robust access method for points and rectangles. ACM SIGMOD Record 19(2):322–331. https://doi.org/10.1145/93605.98741

    Article  Google Scholar 

  43. Ray N, Sokolov D, Reberol M, Ledoux F, Lévy B (2018) Hex-dominant meshing: mind the gap! Comput Aided Des 102:94–103. https://doi.org/10.1016/j.cad.2018.04.012

    Article  Google Scholar 

  44. Catmull E, Clark J (1978) Recursively generated B-spline surfaces on arbitrary topological meshes. Comput Aided Des 10(6):350–355. https://doi.org/10.1016/0010-4485(78)90110-0

    Article  Google Scholar 

  45. Bondy JA, Murty USR (1976) Graph theory with applications, p 264. Macmillan London, London

  46. Stimpson CJ, St NM, Ernst CD, St NM, Pébay PP, Thompson D (2007) The verdict geometric quality library. Technical Report SAND2007-1751, SANDIA

  47. Knupp PM (1999) Winslow smoothing on two-dimensional unstructured meshes. Eng Comput 15(3):263–268. https://doi.org/10.1007/s003660050021

    Article  MATH  Google Scholar 

  48. Koch S, Matveev A, Jiang Z, Williams F, Artemov A, Burnaev E, Alexa M, Zorin D, Panozzo D (2019) ABC: a big CAD model dataset for geometric deep learning. In: The IEEE conference on computer vision and pattern recognition (CVPR)

  49. Ledoux F MAMBO Dataset. https://gitlab.com/franck.ledoux/mambo

  50. Zhou Q, Jacobson A (2016) Thingi10K: a dataset of 10,000 3D-Printing models. arXiv preprint arXiv:1605.04797. arXiv:1605.04797

  51. Livesu M, Pietroni N, Puppo E, Sheffer A, Cignoni P (2020) LoopyCuts: practical feature-preserving block decomposition for strongly hex-dominant meshing. ACM Transactions on Graphics. https://doi.org/10.1145/3386569.3392472

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Georgiadis.

Ethics declarations

Conflict of interest

This study was carried out in the framework of the research project ‘Hextreme,’ funded by the European Research Council (ERC-2015-AdG-694020) and hosted at the Université catholique de Louvain. The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgiadis, C., Reberol, M. & Remacle, JF. Indirect all-quadrilateral meshing based on bipartite topological labeling. Engineering with Computers 38, 4731–4747 (2022). https://doi.org/10.1007/s00366-022-01740-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-022-01740-4

Keywords

Navigation